Using a Finite Parts List to Understand Complexity:

Analysis of Whole-Genome Expression Patterns in terms of Protein Folds

Mark Gerstein

Human, ~3 Gb, ~100K genes [???]

1995

Bacteria, 1.6 Mb, ~1600 **genes** [Science **269**: 496]

1997

Eukaryote, 13 Mb, ~6K **Genes** [Nature **387**: 1]

1998

Animal, ~100 Mb, ~20K genes [Science **282**: 1945]

⁽c) M Gerstein (http://bioinfo.mbb.yale.edu)

Using a Finite Parts List to Understand Complexity: Analysis of Whole-Genome Expression Patterns in terms of Protein Folds

1 Past: Comparing Genomes in terms of Protein Folds

Fold Library, Shared and Unique Folds (Venn, fold tree), Common Folds (top-10), Repeated $\beta\alpha\beta$, Relation of Structural Class to Functional Class, Bias Problem, Prediction (esp. TMs)

2 Preliminary:

Integrating Expression Data into the Analysis

Brown lab yeast data, Top fold by expression, 12-TMs exp. Change, Functional Class Correlated with Expression Change

Fold Library vs. Other Fundamental Data structures

Parts List Database; Statistical, rather than mathematical relationships and conclusions

(Large than physics and chemistry, Similar to Finance (Exact Finite Number of Objects (3,056 on NYSE by 1/98), descrip. by Standardized Statistics (even abbrevs, INTC) and groups (sectors)) Smaller than Social Surveys, Indefinite Number of People, Not Well Defined Vocabulary and statistics.

Shared Folds in Initial Genomes

	M. genitalium			B. subtilis		E. coli		
Rank	Superfamily	#		Superfamily	#		Superfamily	#
1	P-loop hydrolase	60	D	P-loop hydrolyase	173	D	P-loop hydrolase	191
2	SAM methyl- transferase	16	Ä	Rossmann domain	165	Ä	Rossmann domain	158
3	A Rossmann domain	13	•	Phosphate- binding barrel	79	•	Phosphate- binding barrel	64
4	Class I synthetase	12	••	PLP-transferase	44	••	PLP-transferase	38
5	Class II synthetase	11	*	CheY-like domain	36	*	CheY-like domain	36
6	Nucleic acid binding dom.	11		SAM methyl- transferase	30	à	Ferredoxins	35
Total ORFs		479			4268			4268
with Common		105			465			458
Superfamilies		(22%)			(11%)			(11%)

$\frac{\text{Bias Problem}}{\text{Prediction}}$

- Known Structures are Incomplete, Biased <u>Sample</u> from Genome, so...
 - ◊ Resample
 - ◊ Solve Structures
 - ◊ Predict Structures

- TM prediction (KD, GES). Count number with 2 peaks, 3 peaks, &c.
- Yeast has more mem. prots., esp. 2-TMs
- Similar conclusions to others: von Heijne, Rost, Jones, &c.
- No preference for particular supersecondary structures: 7-TM's
- Freq. of Number of TM helixes follows a Zipf-like law: F=1/[5n²]

Using a Finite Parts List to Understand Complexity: Analysis of Whole-Genome Expression Patterns in terms of Protein Folds

1 Past: Comparing Genomes in terms of Protein Folds

Fold Library, Shared and Unique Folds (Venn, fold tree), Common Folds (top-10), Repeated $\beta\alpha\beta$, Relation of Structural Class to Functional Class, Bias Problem, Prediction (esp. TMs)

2 Preliminary:

Integrating Expression Data into the Analysis

Brown lab yeast data, Top fold by expression, 12-TMs exp. Change, Functional Class Correlated with Expression Change

Integrate Gene Expression Data into Folds in Genome Analysis

Yeast Expression Data Principally from Brown lab site (1st available!).

Also: SAGE data, Church lab data, Snyder lab transposon data, Young lab data

> Data from: "Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale". DeRisi et al. Science 278:680. Also, Chu *et al. Science* 1998 October 23; 282: 699-705

<u>Caveat:</u> With GeneChips, only rough ORFto-ORF comparison possible, 1-ORF comparisons along timecourse better. SAGE and transposon data better for this « regard. Mostly we just aggregate the data. <u>Top-10 Folds</u> <u>according to</u> <u>Expression</u>

- Previous top-10 measures duplication
- Now weight by expression using data from Brown et al.

		1		
Common Yeast Folds (scop)	Rep. Structure	Genome Duplication	Expression (aerobic)	Expression (anaerobic)
Protein kinases (cat. core)	lhcl	1	3	4
NTP Hydrolases with P-loop	lgky	2	1	2
Classic Zn finger	lard	3	9	5
Ribonuclease H-like motif	2rn2	4	2	1
Rossmann Fold	lxel	5	4	3
Zn2/Cys6 DNA-binding dom.	125d	6	6	7
7-bladed beta-propeller	2bbk-H	7	8	16
TIM-barrel	1byb	8	5	6
like Ferrodoxin	lfxd	9	7	10
DNA-binding 3-helix bundle	lenh	10	30	36
GroES-like	llep-A	17	10	9
like HSP70, Ct-dom.	ldkz-A	22	11	8

(c) M Gerstein (http://bioinfo.mbb.yale.edu)

Expression not related to Overall Fold Class or Overall Composition

- Fold class composition weighted by transcript frequency does **not** change during differential expression of genes.
- Amino acid composition weighted by transcript frequency does **not** change during differential expression of genes.

<u>Different Classes of</u> <u>Membrane Proteins</u> <u>Have Different</u> <u>Changes in Expression</u> Level (esp. 12 TMs)

Column gives the expression in aerobic conditions (high sugar, second time-series data point in DeRisi et al.), and other column, in anaerobic conditions (low sugar, high ethanol, last time-series data (point in DeRisi et al.). 9 hexose permeases, 1 lactate transporter.

Most Expressed TMs

Most Expressed TMs

n aerobic condi	tions	
ORF	TMs	
YHR078W	4	
YGL008C	6	
YBR012W-B	2	
YLR340W	2	
YPL131W	2	
YHR099W	2	
YMR205C	2	
YHR216W	2	
YLR432W	2	
	5	

<u>in ana</u>	aerodic cor	naitions
ORF		TMs
YPR1	149W	4
YDR3	343C	9
YDR3	342C	9
YKL2	217W	7
YHRO)96C	9
YBR1	116C	2
YIL08	38C	6
YBRO)12W-B	2
YBR)54W	7
YBR2	218C	2

Time

Functional category number	Function	Average correlation	# ORFs
01	METABOLISM	0.1001	1005
01.01	amino-acid metabolism	0.1488	199
01.01.01	amino-acid biosynthesis	0.239	114
01.01.04	regulation of amino-acid metabolism	0.23	32

MIPS YFC: 66 bottom classes, 10 top classes Average correlation of uncharacterized genes is 0.16 Similar to Botstein analysis.

Correlation Coefficient Matrix (Pearson Coefficient)

Average Correlation Coefficient for Group of Genes

[°] <u>Correlate with</u> Expression Level with Functional

Category

Functional category number	Function	Average correlation	# ORFs
01	METABOLISM	0.1001	1005
01.01	amino-acid metabolism	0.1488	199
01.01.01	amino-acid biosynthesis	0.239	114
01.01.04	regulation of amino-acid metabolism	0.23	32
01.01.07	amino-acid transport	0.1198	23
01.01.10	amino-acid degradation	0.0524	36
01.01.99	other amino-acid metabolism activities	0.2205	4
01.02	nitrogen and sulphur metabolism	0.1869	73
01.02.01	nitrogen and sulphur utilization	0.0726	37
01.02.04	regulation of nitrogen and sulphur utilization	0.3715	28
01.02.07	nitrogen and sulphur transport	0.2829	8
01.03	nucleotide metabolism	0.1708	134
01.03.01	purine-ribonucleotide metabolism	0.3639	42
01.03.04	pyrimidine-ribonucleotide metabolism	0.176	28
01.03.07	deoxyribonucleotide metabolism	0.1095	1:
01.03.10	metabolism of cyclic and unusual nucleotides	0.2848	
01.03.13	regulation of nucleotide metabolism	0.2696	1;
01.03.16	polynucleotide degradation	0.2461	
01.03.19	nucleotide transport	0.1187	1:
01.03.99	other nucleotide-metabolism activities	-0.0328	
01.04	phosphate metabolism	0.1348	3'
01.04.01	phosphate utilization	0.16	1:
01.04.04	regulation of phosphate utilization	P 3599	8
01.04.07	phosphate transport	0.0724	1(
01.05	carbohydrate metabolism	0.0779	409
01.05.01	carbohydrate utilization	0.075	256
01.05.04	regulation of carbohydrate utilization	0.1174	120

<u>Results from Analysis</u> of Correlation of Functional Class and <u>Expression</u>

Highest Correlations

- Many groups of genes categorized by MIPS do not have higher correlation than random ORFs
- Smaller groups tend to have a slightly higher correlation

Functional category number	Function	Average correlation	# ORFs
10.04.11	key kinases	0.9403	2
10.04.13	key phosphatases	0.9283	2
11.11	ageing	0.8634	2
02.22	glyoxylate cycle	0.8136	6
10.02.07	G-proteins	0.8122	3
04.03.99	other tRNA-transcription activities	0.6932	4
09.08	biogenesis of Golgi	0.6647	2
09.19	peroxisomal biogenesis	0.6512	2
08.10	peroxisomal transport	0.646	12
04.01.04	rRNA processing	0.6074	53
01.20	secondary metabolism	0.5921	4
01.20.05	amines metabolism	0.5921	4
10.05.11	key kinases	0.0049	4
90	RETROTRANSPOSONS AND PLASMID PROTEINS	0.5299	7
02.10	tricarboxylic-acid pathway	0.5236	22
04.07	RNA transport	0.5111	27

Using a Finite Parts List to Understand Complexity: Analysis of Whole-Genome Expression Patterns in terms of Protein Folds

1 Past: Comparing Genomes in terms of Protein Folds

Fold Library, Shared and Unique Folds (Venn, fold tree), Common Folds (top-10), Repeated $\beta\alpha\beta$, Relation of Structural Class to Functional Class, Bias Problem, Prediction (esp. TMs)

2 Preliminary:

Integrating Expression Data into the Analysis

Brown lab yeast data, Top fold by expression, 12-TMs exp. Change, Functional Class Correlated with Expression Change

http://bioinfo.mbb.yale.edu/MolMovDB

Server Produces Semi-realistic Minimized Interpolation (as MPEG, VRML, &c) between Any 2 Aligned Conformations, Analyzes the Motion

scop (Murzin et al.) Acknowledgements: Ronald Jansen **S** Teichmann **M** Levitt H Hegyi **C** Wilson **C** Chothia W Krebs **J** Lin **ONR**

(Bright)

PhRMA NSF