<u>Comparing Genomes in terms of</u> <u>Protein Structure:</u>

Surveys of a Finite Parts List

Mark Gerstein

Genomes highlight the Finiteness of Biology

1995

1997

1998.....

Microbial Genomes >15 completed, ~40 underway

The Worm: 75% of 100 Mb done, with ~13 K genes so far)

Bacteria 1.6 Mb, ~1600 genes

[Fleischmann *et al.* (1995). "Whole-genome random sequencing and assembly of *Haemophilus influenzae* rd." *Science* **269**: 496-512.] Eukaryote 13 Mb, ~6000 genes The Human: 3 Gb & 100 K genes, 2003?₂.

<u>Comparing Genomes in terms of Protein</u> <u>Structure: Surveys of a **Finite** Parts List</u>

1 Library of Known Folds

Importance of <u>statistics</u>. Scop auto-alignments. Significance follows \underline{EVD} stats, same as sequences.

2 A Census of Known Folds

Which folds in which Organisms: <u>Plants v.</u> <u>People</u>, E coli v. yeast? Shared <u>Fold Tree</u>. <u>Top-10</u> by duplication/expression, repeated $\beta\alpha\beta$ supersecondary struc.

3 Prediction of Unknown Folds

<u>Zipf law</u> for TM's but no 7-TM's. Same 2° comp. but different a.a. comp. Can extrapolate from known structures to genomes?

http://bioinfo.mbb.yale.edu/genome

Acknowledgements: M Levitt, scop (Murzin, Brenner, Ailey, Hubbard, Chothia)

Fold Library

- Primary way to interpret Genome Sequences in terms of Structure
- Very Limited Number of Folds (~1K-10K, Chothia)
- Elements: <u>Domain</u> definitions; <u>Aligned</u> structures, collecting together <u>Non-homologous Sequences</u>; <u>Core</u> region annotation
- Many approaches to building Library
 - Automatic: FSSP-HSSP (Sander), Entrez-MMDB (Bryant)
 - Semi-automatic: CATH (Thornton), HOMALDB (Sali)
 - Manual (scop, Murzin)
 - Start with Sequences: Pfam (Durbin, Eddy), COGs (Koonin, Lipman), Blocks (Henikoff), ProSite (Bairoch)

Scale Fold Library vs. Other Fundamental Data structures

Statistical, rather than mathematical relationships and conclusions, Parts List Database

Folds in Molecular Biology 1000-10000

(Large than physics and chemistry, Similar to Finance (Exact Finite Number of Objects (3,056 on NYSE by 1/98), descrip. by Standardized Statistics (even abbrevs, INTC) and groups (sectors)) Smaller than Social Surveys, Indefinite Number of People, Not Well Defined Vocabulary and statistics.

<u>Automatic Alignments</u> of Scop, Focussing on Statistics of Relationships

- Our Approach
 - Iterative Dynamic Programming, like repeated sequence alignment
 - Oerived from Program of G Cohen (Align)
 - ♦ **Score** = $M_{str}(i,j) = \sum 100 / (5 + d^2)$
- Numerous other approaches to struc. alignment: SAP (Taylor), VAST (Bryant), Artymiuk, Sali, Sippl, Sander, Cohen, STAMP (Barton)

Initial Equivalences --abcde | | | | | ABCDEFG

-	b	-	С	d	е	Score	57
						Nbrk	2
В	Ċ	D	E	F	Ġ	RMS	1.96

	А	В	С	D	Е	F	G
а	7	5	9	2	1	0	0
b	2	9	12	9	7	2	0
С	1	2	2	10	12	8	2
d	0	1	1	2	2	13	7
e	0	0	0	0	1	2	13

									b
а	b	_	_	С	d	е	Score	91	С
							Nbrk	1	d
À	B	С	D	Ē	F	Ġ	RMS	0.65	е

	А	В	С	D	Е	F	G
а	19	4	4	1	1	0	0
b	4	16	16	4	4	1	0
С	1	4	4	14	18	4	1
d	0	1	1	4	4	19	4
е	0	0	0	1	1	4	19

b	-	_	С	d	е	Score	100	
						Nbrk	1	
В	С	D	E	F	Ġ	RMS	0.23	

	A	В	С	D	Ε	F	G
а	20	4	3	1	1	0	0
b	4	20	12	4	4	1	0
С	1	4	4	11	20	4	1
d	0	1	1	4	4	20	4
е	0	0	0	1	1	4	20

Statistics on Range of Similarities

For 2107 pairs, only 2% Outliers (with subtle similarity)

Some Similarities are Readily Apparent others are more Subtle

Easy: Globins

lg V,

Tricky: Very Subtle: G3P-dehydro-Ig C, genase, C-term. domain

Some Similarities are Readily Apparent others are more Subtle

[e.g. P(score s>392) = 1% chance]

- All-vs-All comparison
- Graph Distribution of Scores in 2D (N dependence)
- 1K x 1K families -> ~1M scores;
 ~2K TP embedded in this
- Fit a function ρ(S) to distribution of true negatives (as determined by scop)

A P-value for Significance

- Integration of ρ (ie the CDF) gives P(s>S), the chance of getting a score better than threshold S randomly
- Extrapolated Percentile Rank: How does a Score Rank Relative to all Other Scores?
- For sequences, originally used in Blast (Karlin-Altschul). Then in FASTA, &c.

Extreme Value Distribution (EVD, long-tailed) fits the observed distributions best. The corresponding formula for the P-value:

$$P(z > Z) = \int \rho(z) dz = 1 - \exp(-e^{-Z})$$
₁₂

13

Use Sequence Scores to Validate

- Sequence P-value perfectly tracks FASTA e-value
 - ◊ Validates approach
 - Added Benefit: allows computation of an e-value without doing a db run
- Significance computation can be applied to **any** exisiting sequence or structure alignment

 Also, RMS doesn't work instead of structural alignment (no EVD fit)

 S_{str}

 RMS penalizes worst fitting atoms, easily skewed

RMS

<u>Comparing Genomes in terms of Protein</u> <u>Structure: Surveys of a **Finite** Parts List</u>

1 Library of Known Folds

Importance of <u>statistics</u>. Scop auto-alignments. Significance follows \underline{EVD} stats, same as sequences.

2 A Census of Known Folds

Which folds in which Organisms: <u>Plants v.</u> <u>People</u>, E coli v. yeast? Shared <u>Fold Tree</u>. <u>Top-10</u> by duplication/expression, repeated $\beta\alpha\beta$ supersecondary struc.

3 Prediction of Unknown Folds

<u>Zipf law</u> for TM's but no 7-TM's. Same 2° comp. but different a.a. comp. Can extrapolate from known structures to genomes?

http://bioinfo.mbb.yale.edu/genome

Acknowledgements: M Levitt, scop (Murzin, Brenner, Ailey, Hubbard, Chothia)

<u>At What Structural Resolution</u> <u>Are Organisms Different?</u>

<u>Cluster Trees Grouping 8 Initial</u> <u>Genomes on Basis of Shared Folds</u>

Patterns of Folds Usage in <u>8 Genomes</u>

	fold	fam.	super fold
total in PDB	338	990	25
in at least one of			
8 genomes	240	547	23
present in this			
many genomes			
1	60	192	1
2	32	82	4
3	23	54	3
4	27	53	3
5	17	50	0
6	27	49	3
7	24	41	2
8	30	26	7

	ESHSHMMM CCISPJPG	(##)	ESHSHMMM CCISPJPG	(##)	ESHSHMMM CCISPJPG	(##)	ESHSHMMM CCISPJPG	(##)	ESHSHMMM CCISPJPG	(##)
J	11111111 1111 1 111 1111.1 1.11.1	<pre>(30) (09) (06) (04) (02) (02) (01) (01) (01) (01)</pre>	.1 11111 1.11 .11 .11 .111 1.1111 1111 1111 1111	(23) (08) (05) (04) (02) (02) (01) (01) (01) (01)	1 1.1 1.11 11111.1 1111.111 .1.11 1.111 1.111 1.111 1.111 1111	<pre>(19) (08) (05) (02) (02) (02) (01) (01) (01) (01)</pre>	11111.11 1.111.11 1.111 1111.11 1.111 11111 1 1 .1.111 1.111 1.111 1.111	<pre>(16) (06) (04) (02) (02) (02) (02) (01) (01) (01)</pre>	111111 11 11.1 111111 11111	<pre>(16) (06) (04) (02) (02) (01) (01) (01) (01) (01)</pre>
	11	(01)	1.1	(01)	11	(01)	1.1	(01)	.11.	(01)

Superfold = fold that allows many non-homologous seq. (Thornton/Orengo)

Top-10 Folds in 8 First Genomes

Num in	Classe	Fold Name	Representative
genome	Class	Fold Name	(PDB selection)
			(i bb selection)
Top-10 in	aeuka	ryotic genome (SC)	
84	αнβ	Protein kinases (catalytic core)	lirk
49	α/β	P-loop containing NTP hydrolases	lgky
35	αβ	Rossmann Fold	20hx A:175-324
31	αβ	TIMbarrel	ltim A:
25	α/β	Ribonuclease H-like	2rm2
18	S	Classic zinc finger	lzaa C:
14	αнβ	Ubiquitin conjugating enzyme	laak
12	β	GroES-like	lacy L:109-211
10	α/β	Thioredoxin-like	ltrx
9	αβ	Thiamin-binding Fold	1pvd A:2-181
5x8			
7	αβ	Flavodoxin-like	3chy
Top-11 in	aeuba	acterial genome (HI)	
18	α/β	Rossmann Fold	20hx A:175-324
13	α/β	P-loop containing NTP hydrolases	1gky
12	α/B	Flavodoxin-like	3chy
10	α/β	TIM barrel	ltim A:
10	α : β	Ferredoxin-like	lfxd
10	α/B	Ribonuclease H-like	2m2
6	α/B	Periplasmic binding protein-like II	lsbo
5	α/B	Periplasmic binding protein-like I	2dri
5	α μ β	Like Class II aaRS synthetases	1srv A:111-421
4	ß	OB-fold	1000
4	α/β	Thiamin-binding Fold	1pvd A:2-181
Top 11 :	anard	hand conome (M.N.	
100-111	oul ²	Ferredovin-like	1 fwd
10	ωβ		lolar
7	αβ	TIM barrol	1 tim A.
6	αβ	Posemann Fold	10mr A • 175-224
5	ωp	Listopo fold	2011X A+1/0-524
э 4	α	This is the final set of the set	ших 1
4	wp	Internitry rold	1pva A: 2-181
4	αp		scriy
4	β	Reductase/elongation factor common (lerg A: 283-403
3	αθ	AIP-grasp	1bnc A:115-330
3	αβ	HLH-dependent transferases	ldka
3	αβ	ATP pyrophoshatases	1gpm A: 208-404

What are the most common folds?

How many shared?

Many Superfolds

Mostly

 α/β

Reductase/ Elongation Factor	OB Fold O	TIM⊡ Barrel O
		63
Ferrodoxin Fold O	FAD Binding O	Beta-Grasp Fold O
P-loop Hydrolase O	Rossmann Fold O	Thiamin⊡ Binding
Class II Synthetase		

Top-5 Most Common Folds

				-							
#	Class	SC Fold	Representative Structure	#	Class	HI Fold	Representative Structure	#	Class	MJ Fold	Representative Structure
			(PDB selection)				(PDB selection)				(PDB selection)
84	α+β	Protein kinases (catalytic core)	lirk	18	α/β	Rossmann Fold	20hx A:175-324	19	α+β	Ferredoxin-like	lfxd
49	α/β	NTP hydrolases with P-loop	lgky	13	α/β	NTP hydrolases with P-loop	1 akv	10	α/β	NTP hydrolases with P-loop	1qky
35	α/β	Rossmann Fold	20hx A:175-324	12	α/β		2 51-7	7	α/β	TIM barrel	1tim A·
31	α/β	TIM barrel	ltim A:	12	ωp		SCHY	6	or/B	Bossmann Fold	2. aby A:175 224
25	α/β	Ribonuclease H-like	2rn2	10	α/β	TIM barrel	ltim A:		ωp		2011X A.175-524
18	s	Classic zinc finger	lzaa C:	10	α+β	Ferredoxin-like	lfxd	5	α	Histone-fold	lntx
14	α+β	Ubiquitin conjugating enzyme	laak	10	α/β	Ribonuclease H-like	2rn2	4	α/β	Thiamin-binding Fold	1pvd A:2-181
12	β	GroES-like	lacy L:109-211	6	α/β	Periplasmic binding protein-like II	1sbp	4	α/β	Flavodoxin-like	3chy
10	α/β	Thioredoxin-like	ltrx	5	α/β	Periplasmic binding protein-like I	2dri	4	β	Reduct./elongation fac. dom.	lefg A:283-403
9	α/β	Thiamin-binding Fold	lpvd A:2-181	5	α+β	Like Class II aaRS synthetases	1sry A:111-421	3	α+β	ATP-grasp	1bnc A:115-330
5 x 8				4	β.	OB-fold	lpyp	3	α/β	PLP-dependent transferases	1dka
7	α/β	Flavodoxin-like	3chy	4	α/β	Thiamin-binding Fold	1pvd A:2-181	3	α/β	ATP pyrophoshatases	1gpm A:208-404
				<u> </u>							

<u>Top-10 Folds</u> <u>according to</u> <u>Expression</u>

- Previous top-10 measures duplication
- Now weight by expression using data from Brown et al.

Common Yeast Folds (scop)	Rep. Structure	Genome Duplication	Expression (aerobic)	Expression (anaerobic)
Protein kinases (cat. core)	lhcl	1	3	4
NTP Hydrolases with P-loop	lgky	2	1	2
Classic Zn finger	lard	3	9	5
Ribonuclease H-like motif	2rn2	4	2	1
Rossmann Fold	lxel	5	4	3
Zn2/Cys6 DNA-binding dom.	125d	6	6	7
7-bladed beta-propeller	2bbk-H	7	8	16
TIM-barrel	1byb	8	5	6
like Ferrodoxin	lfxd	9	7	10
DNA-binding 3-helix bundle	lenh	10	30	36
GroES-like	llep-A	17	10	9
like HSP70, Ct-dom.	ldkz-A	22	11	8

What are the most common folds: Overall? In plants? In animals?

			Num	ı. of	Se	que	ence	s
Example Structure (PDB)	Fold Name	Num. Families Seq.	Total	Virus	Eubacteria	Plant	Metazoan	Other
Totals		719	37706	3139	7032	4960	19319	1828
Overall Top-1 1REI-A β 6TIM-B α/ 1ATP-E O 1FXD O 1AKE-A α/ HDD-C α 2H5D-A α/ 1MBD α 2RN2 α/ 1ZNF S	0 Immunoglobulin-like β TIM-barrel Protein Kinases (catalytic core) Ferredoxin-like β NTP Hydrolases containing P-loop DNA-binding 3-helical bundle β Rossmann Fold (NAD binding) Globin-like β like Ribonuclease H Classic Zinc Finger	32 29 1 17 9 13 11 3 15 2	∇ 13 6 4 4 3 3 2 1	 ◊ 3 2 ◊ ◊ ◊ 5 ◊ 	1	 ◊ 20 3 17 3 2 3 ◊ 2 	25 2 6 2 5 1 4 1 3	 ◊ 13 6 8 7 ◊ 3 1 5 1
Sequence Fam IREI-A β 6TIM-B α// IFXD O 2RN2 α// IPTX S 2TBV-C β HDD-C α// LRCF α//	anily Top-11 Immunoglobulin-like β TIM-barrel Ferredoxin-like β like Ribonuclease H OB-fold Small inhibitors, toxins, lectins Viral coat and capsid proteins DNA-binding 3-helical bundle β Rossmann Fold (NAD binding) β Flavodoxin-like 4-helical cytokines	 ∇ 32 29 17 15 14 14 13 11 11 11 	13 6 4 2 ◊ 1 3 3 ◊ ◊	 ◊ 2 5 ◊ ◊	1 2 1 1 0 7 4 ◊	 ◊ 20 17 2 ◊ 3 ◊ 	25 2 ↓ 1 ↓ ↓ 5 1 ↓ 2	 ◊ 13 8 5 ◊ ◊ ◊ ◊ 3 ◊

			Percen	t of	Sequences
	Fold Name	Number		Virus	Eubacteria Plant Plant Metazoan Other
Plant 7					ν
α/β	TIM-barrel	29	6	3	7 20 2 13
0	like Ferredoxin	17	4	2	2 17 ³ 8
α/β	NTP Hydrolases containing P-loop	9	3	3	5 3 2 7
0	Protein Kinases (catalytic core)	1	4	3	³ 3 6 6
S	Small inhibitors, toxins, lectins	14	3		3 3 3
α/β	Rossmann Fold (NAD binding)	11	3	3	7 3 1 3
0	RuBisCO (small subunit)	1	3		³ 2 ³
β	like Concanavalin A	6	3	3	³ 2 ³ 2
α	like Hydrophobic Seed Protein	2	3		2
α/β	like Ribonuclease H	15	2	5	1 2 1 5
Metazo	oan Top-10				∇
β	like Immunoglobulin	32	13	3	1 ³ 25 ³
0	Protein Kinases (catalytic core)	1	4	3	³ 3 6 6
α	DNA-binding 3-helical bundle	13	3	3	³ 2 5 ³
α	like Globin	3	2		1 3 4 1
S	Classic Zinc Finger	2	1	3	3 1
α/β	NTP Hydrolases containing P-loop	9	3	3	5 3 2 7
β	Trypsin-like serine proteases	4	1	1	3 2 3
α	Cytochrome P450	1	1		³ ³ ² ¹
S	like Glucocort. receptor (DNA-binding)	4	1	3	2 3
α	EF-hand	3	1		° 1 2 1

An Issue with Fold Counting: Biases in the Databanks

- Over-representation of certain species and functions in the databanks (e.g. human v. plant globins, Ig's)
 - Nevertheless HI top-10 like eubacterial top-10
- PDB is small, biased sample of genome (6-12%)
- Selection of structures in PDB is biased, anectdotal
- Different numbers with different comparison sensitivity: FASTA, HMM, &c
- Some Correction with Seq. Weighting, Diff. Sampling

<u>The Problem: All</u> <u>Folds in Genome</u> <u>Not Known until</u> <u>20??</u> \rightarrow <u>Prediction</u>

- Separate TM, LC, linkers
- How many residues in genome matched by known folds, in 1975, '76, '77...'00...'50

<u>Comparing Genomes in terms of Protein</u> <u>Structure: Surveys of a **Finite** Parts List</u>

1 Library of Known Folds

Importance of <u>statistics</u>. Scop auto-alignments. Significance follows \underline{EVD} stats, same as sequences.

2 A Census of Known Folds

Which folds in which Organisms: <u>Plants v.</u> <u>People</u>, E coli v. yeast? Shared <u>Fold Tree</u>. <u>Top-10</u> by duplication/expression, repeated $\beta\alpha\beta$ supersecondary struc.

3 Prediction of Unknown Folds

<u>Zipf law</u> for TM's but no 7-TM's. Same 2° comp. but different a.a. comp. Can extrapolate from known structures to genomes?

http://bioinfo.mbb.yale.edu/genome

Acknowledgements: M Levitt, scop (Murzin, Brenner, Ailey, Hubbard, Chothia)

- TM prediction (KD, GES). Count number with 2 peaks, 3 peaks, &c.
- Yeast has more mem. prots., esp. 2-TMs
- Similar conclusions to others: von Heijne, Rost, Jones, &c.
- No preference for particular supersecondary structures: 7-TM's
- Freq. of Number of TM helixes follows a Zipf-like law: F=1/[5n²]

2º Structure Prediction

- Bulk prediction of 2° struc. in genomes
- Same fraction of α and β (by element, half each)
- Both overall and only for unknown soluble proteins.

- Diff From PDB: 31% helical and 21% strand.
- Related results: Frishman

Fraction of		
residues		
Predicted		
to be in	strand	helix
Avg	17%	39%
SD	1%	2%
EC	17%	39%
HI	16%	41%
HP	15%	42%
MG	17%	39%
MJ	19%	37%
MP	17%	39%
SC	17%	34%
SS	16%	38%

Not expected since.....

•

<u>Different</u> <u>Amino Acid</u> <u>Composition</u> <u>Should Give</u> <u>Different 2^o</u> <u>Structure</u>

Each a.a. has different propensity for local structure
->
Different Compositions (K
from 4.4 in EC to 10.4 in
MJ, Q too)
->
Different Local Structure
(but compensation?)
Propensities from Regan

Propensities from Regan (beta) and Baldwin (alpha)

Amino Acid Composition

Propensity (kcal/mole)

	EC	HI	SS	SC	HP	MP	MG	MJ	TM-hlx	helix	strand
K	4.4	6.3	4.2	7.3	8.9	8.6	9.5	10.4	8.8	-1.5	-0.4
C	1.2	1.0	1.0	1.3	1.1	.8	.8	1.3	-2	-1.1	-0.8
R	5.5	4.5	5.1	4.5	3.5	3.5	3.1	3.8	12.3	-1.9	-0.4
N	4.0	4.9	4.0	6.1	5.9	6.2	7.5	5.3	4.8	-1	-0.5
Q	4.4	4.6	5.6	3.9	3.7	5.4	4.7	1.5	4.1	-1.3	-0.4
Α	9.5	8.2	8.5	5.5	6.8	6.7	5.6	5.5	-1.6	-1.9	0
I	6.0	7.1	6.3	6.6	7.2	6.6	8.2	10.5	-3.1	-1.2	-1.3
Н	2.3	2.1	1.9	2.2	2.1	1.8	1.6	1.4	3	-1.1	-0.4
S	5.8	5.8	5.8	9.0	6.8	6.5	6.6	4.5	-0.6	-1.1	-0.9
Ν	2.8	2.4	2.0	2.1	2.2	1.6	1.5	2.2	-3.4	-1.4	-0.9
Ρ	4.4	3.7	5.1	4.3	3.3	3.5	3.0	3.4	0.2	3	>3.0
G	7.4	6.6	7.4	5.0	5.8	5.5	4.6	6.3	-1	0	1.2
F	3.9	4.5	4.0	4.5	5.4	5.6	6.1	4.2	-3.7	-1	-1.1
E	5.7	6.5	6.0	6.5	6.9	5.7	5.7	8.7	8.2	-1.2	-0.2
Y	2.9	3.1	2.9	3.4	3.7	3.2	3.2	4.4	0.7	-1.2	-1.6
V	7.1	6.7	6.7	5.6	5.6	6.5	6.1	6.9	-2.6	-0.8	-0.9
Т	5.4	5.2	5.5	5.9	4.4	6.0	5.4	4.0	-1.2	-0.6	-1.4
D	5.1	5.0	5.0	5.8	4.8	5.0	4.9	5.5	9.2	-1	0.9
L	10.6	10.5	11.4	9.6	11.2	10.3	10.7	9.5	-2.8	-1.6	-0.5
Ν	1.5	1.1	1.6	1.0	.7	1.2	1.0	.7	-1.9	-1.1	-1

total propensity

- α -1.00 -1.02 -0.96 -1.00 -1.05 -1.03 -1.05 -1.01
- β -0.27 -0.33 -0.26 -0.36 -0.37 -0.38 -0.42 -0.36

Supersecondary structure words

- Look at super-secondary patterns ("words" such as αα or βαβ) in predictions
- Compare observed freq. with expected freq.
 - odds = $f(\alpha\beta)/f(\alpha)f(\beta)$ (Freq. Words, Karlin)
- Do have differences between genomes (and PDB) here

HI more $\alpha\alpha$, $\alpha\alpha\alpha$, $\alpha\alpha\alpha\alpha$...

SC more ββ, βββ, βββββ...

MJ more $\alpha\beta\alpha\beta$, $\beta\alpha\beta\alpha$...

	Super-	Maximum	Relative Abundance										
	Secondary	Difference		(Odds	Ratio)								
	Structure	between 3		,	,								
	"Word"	Genomes	Н	MJ	SC	PDB							
	ββ	26%	0.96	1.06	1.24	1.22							
	αα	15%	0.97	0.85	0.83	0.85							
	αβ	10%	1.09	1.09	0.99	0.95							
	βα	7%	0.98	1.00	0.93	0.99							
	βββ	41%	0.96	1.15	1.46	1.62							
	ααα	19%	1.01	0.83	0.84	0.92							
	αβα	18%	1.04	1.03	0.87	1.16							
	ααβ	15%	1.03	0.97	0.89	0.70							
	βαβ	12%	1.15	1.24	1.10	1.19							
	βαα	11%	0.93	0.87	0.83	0.78							
	ββα	98	0.90	0.94	0.99	0.82							
	αββ	6%	0.97	0.98	1.03	0.80							
	ββββ	54%	1.03	1.35	1.78	2.28							
	αααα	29%	1.10	0.82	0.89	1.18							
	βββα	25%	0.85	0.94	1.10	0.98							
	βαβα	23%	1.11	1.18	0.94	1.48							
р.	αβαβ	21%	1.21	1.23	0.99	1.39							
Q	αβαα	21%	1.00	0.95	0.81	1.00							

<u>Genomes Sequences</u> are longer than those in Known Structures

Assess 2°,TM predictions

- (+) comprehensive, statistical
- (-) predictions <u>inaccurate</u> (~65%)
- (-) extrapolate from PDB (esp. TM), domain problem

How Representative are the Known Structures of the Proteins in Complete Genome? Is prediction (extrapolation) based on known structures justified?

340 aa for avg. genome seq.(470 aa for yeast)205 aa for PDB chain170 aa for PDB domain

How Representative are the Known Structures of the Proteins in Complete Genome?

Amino Acid Composition

Name	Soluble PDB	= all-β	+ all-α
٨	0.400/	0.00/	0.0%
A	8.40%	0.8%	9.2%
C	1.72%	1.6%	1.4%
D	5.91%	5.9%	5.8%
E	6.29%	5.2%	7.3%
F	3.94%	4.2%	4.2%
G	7.79%	8.4%	6.4%
Н	2.19%	2.1%	2.2%
I	5.54%	5.4%	5.1%
K	6.02%	5.6%	6.5%
L	8.37%	7.3%	9.6%
Μ	2.15%	1.7%	2.4%
Ν	4.57%	5.3%	4.4%
Р	4.70%	5.1%	4.4%
Q	3.73%	3.5%	4.2%
R	4.78%	4.2%	5.4%
S	5.97%	7.2%	5.7%
Т	5.87%	7.2%	5.2%
V	6.96%	7.6%	5.7%
W	1.46%	1.7%	1.5%
Y	3.64%	3.8%	3.5%

ABS.	rms	Κ	I	С	Q	W	Ν	F	L	G	Α	Ρ	S	R	Н	Μ	Ε	D	Т	Y	V
EC		4.4	6.0	1.2	4.4	1.5	4.0	3.9	10.6	7.4	9.5	4.4	5.8	5.5	2.3	2.8	5.7	5.1	5.4	2.9	7.1
HI		6.3	7.1	1.0	4.6	1.1	4.9	4.5	10.5	6.6	8.2	3.7	5.8	4.5	2.1	2.4	6.5	5.0	5.2	3.1	6.7
SS		4.2	6.3	1.0	5.6	1.6	4.0	4.0	11.4	7.4	8.5	5.1	5.8	5.1	1.9	2.0	6.0	5.0	5.5	2.9	6.7
SC		7.3	6.6	1.3	3.9	1.0	6.1	4.5	9.6	5.0	5.5	4.3	9.0	4.5	2.2	2.1	6.5	5.8	5.9	3.4	5.6
HP		8.9	7.2	1.1	3.7	.7	5.9	5.4	11.2	5.8	6.8	3.3	6.8	3.5	2.1	2.2	6.9	4.8	4.4	3.7	5.6
MP		8.6	6.6	.8	5.4	1.2	6.2	5.6	10.3	5.5	6.7	3.5	6.5	3.5	1.8	1.6	5.7	5.0	6.0	3.2	6.5
MG		9.5	8.2	.8	4.7	1.0	7.5	6.1	10.7	4.6	5.6	3.0	6.6	3.1	1.6	1.5	5.7	4.9	5.4	3.2	6.1
MJ		10.4	10.5	1.3	1.5	.7	5.3	4.2	9.5	6.3	5.5	3.4	4.5	3.8	1.4	2.2	8.7	5.5	4.0	4.4	6.9
AVG		7.5	7.3	1.1	4.2	1.1	5.5	4.8	10.5	6.1	7.0	3.8	6.4	4.2	1.9	2.1	6.5	5.1	5.2	3.3	6.4
SD		2.3	1.4	.2	1.3	.3	1.2	.8	.7	1.0	1.5	.7	1.3	.9	.3	.4	1.0	.3	.7	.5	.6
Diff.																					
EC	16	-25	8	-29	19	7	-15	-2	28	-6	13	-5	-3	16	3	28	-7	-14	-7	-22	1
HI	17	8	27	-38	24	-21	6	12	26	-15	-2	-20	-2	-6	-7	10	5	-17	-11	-14	-4
SS	20	-29	13	-39	49	9	-13	1	37	-6	1	11	-3	6	-15	-8	-2	-16	-6	-20	-4
SC	21	24	18	-21	5	-27	31	14	15	-36	-34	-7	51	-7	-2	-4	5	-4	0	-8	-20
HP	27	52	29	-34	0	-51	27	36	34	-26	-18	-29	14	-28	-4	2	11	-20	-25	1	-20
MP	28	45	18	-55	44	-17	35	41	24	-29	-20	-25	8	-27	-18	-28	-8	-17	2	-11	-7
MG	36	61	48	-50	27	-32	62	53	28	-41	-33	-36	11	-35	-28	-30	-8	-18	-8	-11	-12
MJ	38	77	88	-23	-61	-49	14	6	14	-19	-35	-28	-25	-20	-35	1	40	-8	-31	20	-2
AVG		26	31	-36	13	-23	19	20	26	-22	-16	-17	6	-13	-13	-4	4	-14	-11	-8	-9
RMS		45	39	38	35	31	30	28	27	25	24	23	21	21	18	18	16	15	15	15	11

<u>Comparing Genomes in terms of Protein</u> <u>Structure: Surveys of a **Finite** Parts List</u>

1 Library of Known Folds

Importance of <u>statistics</u>. Scop auto-alignments. Significance follows \underline{EVD} stats, same as sequences.

2 A Census of Known Folds

Which folds in which Organisms: <u>Plants v.</u> <u>People</u>, E coli v. yeast? Shared <u>Fold Tree</u>. <u>Top-10</u> by duplication/expression, repeated $\beta\alpha\beta$ supersecondary struc.

3 Prediction of Unknown Folds

<u>Zipf law</u> for TM's but no 7-TM's. Same 2° comp. but different a.a. comp. Can extrapolate from known structures to genomes?

http://bioinfo.mbb.yale.edu/genome

Acknowledgements: M Levitt, scop (Murzin, Brenner, Ailey, Hubbard, Chothia)

http://bioinfo.mbb.yale.edu/genome

<u>Comparing Genomes in terms of Protein</u> <u>Structure: Surveys of a **Finite** Parts List</u>

1 Library of Known Folds

Importance of <u>statistics</u>. Scop auto-alignments. Significance follows \underline{EVD} stats, same as sequences.

2 A Census of Known Folds

Which folds in which Organisms: <u>Plants v.</u> <u>People</u>, E coli v. yeast? Shared <u>Fold Tree</u>. <u>Top-10</u> by duplication/expression, repeated $\beta\alpha\beta$ supersecondary struc.

3 Prediction of Unknown Folds

<u>Zipf law</u> for TM's but no 7-TM's. Same 2° comp. but different a.a. comp. Can extrapolate from known structures to genomes?

http://bioinfo.mbb.yale.edu/genome

Acknowledgements: M Levitt, scop (Murzin, Brenner, Ailey, Hubbard, Chothia)

Issues with Top-10

Depend on: Database (version) used, Biases Which Genomes Comparison Prog. (FASTA/BLAST) Threshold (1e-3, 1e-4)

Want a Fair Census with Uniform & Consistent Sampling

Common Yeast Folds	Rep.	GeneC	ensus	Sacch3	D, SGD	diff.
	Struct.	ict. count rank		count	rank	
Protein kinases (cat. core)	lhcl	110	1	109	1	
NTP Hydrolases with P-loop	1gky	69	2	52	2	
Classic Zn finger	lard	55	3	34	7	•
Ribonuclease H-like motif	2rn2	54	4	30	8	•
Rossmann Fold	1xel	46	5	41	5	
Zn2/Cys6 DNA-binding dom.	125d	46	б	30	9	•
7-bladed beta-propeller	2bbk-H	46	7	0	-	<
TIM-barrel	1byb	36	8	39	6	•
Ferrodoxin-like	lfxd	28	9	43	4	•
DNA-binding 3-helix bundle	lenh	22	10	22	10	
Long Helix Oligomers (coils)	lzta	1	-	47	3	<

Top-10 in 8 Genomes

Sacc3D (Chervitz, Cherry) vs GeneCensus

- Structure of "scop"
 - ◊ ~10K structure **domains**
 - ◊ ~1K sequence families
 - ♦ ~350 folds
 - ◊ 25 superfolds (>10 fam)
 - ◊ ~2K + ~2K true positive
 pairs (1.32)
- Different Sequence Thresholds for Clustering
 - ◊ high threshold, struc. sim.
 - ◊ Low threshold, seq. sim.
 - 01 e-value for all comparisons

- Brenner et al. used scop pairs to calibrate the statistics of comparison methods
 - One of the TP pairs can be found with FASTA?
 - \diamond e-value ~ epq
- Credits: scop, Murzin, Brenner, Ailey, Hubbard, Chothia; Thornton, superfolds; Pearson, fasta