Fools for the Motions <u>o</u> Macromolecular 20 Geometry Analysis

Mark Gerstein

<u>Analysis of</u> <u>Macromolecular</u> <u>Geometry & Motions</u>

1 Database of

Macromolecular Motions

Interface packing, shear v. hinge, web DB, 125+4000 motions

2 Morph Movie Server

Restrained Interpolation betw. submitted endpoints, std. stats based on 2core+hinge model, hinge finder

3 Geometry Software (Packing)

Voronoi volumes, relation to surface, radii problem, packing measurement

4 Standard Radii & Volumes

Needed for volume calculation, 173 raw to 18 basic types, Sensitivity Analysis, radii set, atom selection criteria, structure set

W Krebs, C Chothia, J Tsai, Y Harpaz, R Taylor

bioinfo.mbb.yale.edu/MolMovDB

- What are they?
 - Proteins, Nucleic Acids (Hammerhead)
 - Sidechains (trivial),
 Loops (LDH), Domains (ADK), Subunits (Hb)
 - When a Ligand Binds: Open, Closed
- Essential link between structure and function
 - catalysis, regulation, transport, formation of assemblies, and cellular locomotion
- A complicated biological phenomena that can be studied in quantitative detail
 - changes in thousands of atomic coordinates

Macromolecular Motions

Motion in Calmodulin [cm]

Classification

Known Domain Motion, Hinge Mechanism [D-h-2]

Structures

- Closed is 2BBM; fly, NMR, closed with peptide (Links to PDB, Entrez, SCOP, Core-Structures, VR 4L-lines, and VRML-tubes).
 Closed is 1CTR (Links to PDB, Entrez, SCOP, Dore-Structures, VIML-lines, and VRML-tubes).
 Closed is 1CDL; mammelian, recomb, Massai (Links to PDB, Entrez, SCOP, Dore-Structures, VRML-lines, and VRML-tubes).
 Closed (conf. 3) is 2BBN; fly, NMR, closed with 2nd peptide (Links to PDE, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
 Closed (conf. 3) is 2BBN; fly, NMR, closed with 2nd peptide (Links to PDE, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
 Open is 1CL; human, X-ray, refined (Links to PDE, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
 Open is 4CLN; fly, X-ray (Links to PDF, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
 - Basically, this hinge motion involves long helix splitting into 2 helices (inclined at ~100 degrees) with strand in between.

O The unligated form of calmodulin contains two globular domains, connected by a long helix. NMR and X-ray structures of ligated calmodulin show the molecule binding to peptide belies with different sequences and the two domains closing around the peptide far enough to make contact with each other. In this motion, the long interdomain helix, which is known to have only marginal stability in solution, partly unfolds to break into two helical segments connected by a 4-residue hinge region in an extended conformation. The angle between the axes of the two helical segments is ~100 degrees. As there is an additional twist around the helix axes, the total rotation of one domain relative to the other is upwards of 150 degrees. Calmodulin can bird neutrides with different servences because of flexibility in the side.

Manual Gold-standard Motions

~150 Different Motion Ids, ~250 PDB identifiers

Submitted + Auto-generated Motions

>5000

PDB id acts as Foreign Key into other DBs

Text Blurb, Literature refs...

~35 Relational Tables

What's in the DB?

Standardized Terminology

Particular values describing motion

- Annotation Level (1..10) = 7
 Domain 1 (residue selection) = 2 80
 Domain 2 (residue selection) = 81 147
- Location of a Hinge (residue selection) = 72 82 (4cln v. 2bbm)
- Maximum CA displacement (A) = 60 (After sieve-fitting on domain-1)
- O Maximum Rotation (degrees) = 148.02
- Number of Inter-domain connections = 1
- Number of Significant Torsion Angle Changes = 18 (Greater than 20 degrees)
- Number of hinges = 1

Standard statistics

◊ torsion angles, max CA disp., &c

• Relations betw. motions

◊ "sim-to", "contains," "Share-characteristics"

Inferred Motions

1 structure but "sim-to" another with 2

	Hand- statist	gathered		Automa	tically co	llected n	notion statis	stics
Value	Min	Max	Mean	Min	Max	Mean	Median	Stdev
Maximum Cα displacement (Å)	1.5	60	12	0.90	81	23	17	19
Maximum hinge rotation (°)	5	148	24	0.0	150	35	9.5	46

Name	Mean of	Min of	Max of
	max	max	max
Maximum Alpha Change	140°	16°	180°
Maximum Phi Change	180°	140°	180°
Maximum Psi Change	150°	23°	180°

<u>Information,</u> <u>Size, then</u> <u>Packing Based</u> <u>Classification</u>

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu 7

Shear Motion

Hinge Motion

	Shear Mechanism	Hinged Mechanism
Well-Packed	MAINTAINED,	NOT MAINTAINED;
Interfaces	throughout motion	Rather created, burying surface
Mainchain Packing	Constrained by close packing	Free to kink at hinge
Mainchain Torsions	Many small changes	A few large changes
Motion Overall	Concatenation of small local motions	Identical to twisting at hinge
Motion at Interface	Parallel to plane of interface (shear)	Perpendicular to interface
Sidechain Packing	Same packing in both forms	New contacts; Packing at base of hinge crucial.
Sidechain Torsions	Mostly small changes	Some large changes
Simple Example	Trp Repressor, Insulin	Lactoferrin, Calmodulin

<u>Shear/Hinge</u> <u>Paradigm</u> <u>Is there a</u> <u>maintained</u> <u>Interface?</u>

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

ω

- Intercalcating Interface, Knobs into Holes
- Packing is a strong constraint on motions
 - Domain or loop motions have to be fast (~10 ps – 100 ns)
 - Can't cross big energy barriers involved in repacking an interface
- Not applicable to allosteric motions, which are much slower (~1 ms) and do involve repacking interfaces

Interface Packing and Motions

<u>Current</u> <u>State of</u> <u>Gold</u> <u>Standard</u> <u>Manually</u> <u>Curated</u> <u>Motions</u>

Experimental Techniqu	е			Entries		Frac	cti	on	
			stu	idied by t	his	0	f		
			t	echnique	Э	data	08	ase	
All Techniques					122)0%	
							~	50/	
	llography	ý			116		S	15% 70/	
Molecular Dynamics Si	mulation	9			9 4			1 /0 3%	
Time-resolved crystallo	aranhy	5			т С			2%	
Circular Dichroism (CD)				2			2%	
Fourier Transform Infra	, ired				1		<	:1%	
Spectroscopy (FTIR)					-				
Molecular Biology Stud	ies of Mo	otion			1		<	:1%	
		it					Π		
	.u	ner		Ľ,		<u> </u>			
26	ů	agr		nqr		Ē		a t	5
ö	ă	Ē		Ñ		5		Ļ	-
Mechanism							Ц		
Hinge	38 51%	16 5	9%					54	44%
Shear	14 19%	31	1%					17	14%
Partial Refolding	5 7%							5	4%
Allosteric				8 57%				8	7%
Other/Non-Allosteric	2 3%	1	4%	6 43%				9	7%
Unclassifiable	15 20%	72	6%		3	50%		25	20%
Notably Motionless								1	1%
Nucleic Acid					3	50%		3	2%
Known** / %category	53 72%	25 9	3%	11 79%	5	83%		94	77%
Suspected / %category	21 28%	2	7%	3 21%	1	17%	Ц	28	23%
							Ц		
Totals / %DB	74 61%	27 2	2%	14 11%	6	5%		122	

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu 10

Motion in Citrate Synthase

Shear Mechanism Involves Many Small Motions across a <u>Continuously</u> <u>Maintained Interface</u> 1999, Yale, bioinfo.mbb.yale.edu

Mark Gerstein,

Q

42

Hinge Mechanism involves absence of steric constraints (continuously maintained interface), esp. at hinge

15 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

<u>Analysis of</u> <u>Macromolecular</u> <u>Geometry & Motions</u>

1 Database of

Macromolecular Motions

Interface packing, shear v. hinge, web DB

2 Morph Movie Server

Restrained Interpolation between submitted endpoint conformations, standardized stats, hinge finder

3 Geometry Software (Volumes)

Voronoi volumes, relation to surface, radii problem, packing measurement

4 Standard Radii &

Volumes

Needed for volume calculation, 18 basic types, Sensitivity Analysis, radii set, atom selection criteria, structure set

W Krebs, C Chothia, J Tsai, Y Harpaz, R Taylor

bioinfo.mbb.yale.edu/MolMovDB

2		Movie Gall	ery of	Macro	omolecular Motions		
		Relate is a lating of motion of these of	no estolar	alla dine <u>Containa</u> Scraitly generated	ny of Maximalievia Maximatia. It by not <u>maph annu</u>		
		MOBUS		FEB EN	SUBMITTER INFO		
negh II	saiden E	name (in 1981, or relatively)	10	10,000	Rate,+ mail	64.0	posta (
107.309		ALPHA LACTICLEUMON	1822	BEL-	(2008 B3, secolos@sini.god	Pechd 110 110 807	8.
2010.400	10	Orderstate Risser-OADQA's, slippi	24.36	INCE.	(For stars interconnections and		80
111	10.	Admittale Kasare			Contrast months (Ball to page in Demons)	BIO4189	84
£.	sab	Almohol Deleyilengenaare (ADH)	DATE:	SACE -			8.
251	unity	America V (Top motion)			CPE, stick ligana, str.	01049999	Ha .
211,216,216,2	waters.	Annesis V (Tep-metion)	LAD	LAD (2548)			80
4	14	Anywhete Amino Transferane (AAT)	in al	salita.			80
Case.	10.841	Aspetals Transmittee rates (XTDard)	INTE	SATL.			84
CI1.1429	shini	Culturale.	ELE	ETH-	(Mah Destrict (Interior), and (Dath pair, etc.)	Pechan DEDUBAT ROT 1999	8.
Standad.	utied	Cuttiendes	2008	423.			80
10.1 1010		Colouribulas D Sectional diseases	EM	12M2	(Minel Alds, miled aller@ResCith rd)	Tur-April 171230 IEUT 1899	81
		Cain-shain	10780	ACLL .			80
104		Committee	_		Cartan acris	007408	80
947	-	Convolution			CarbonCPE.orthi	0/04189	84
104.10112	-	Calmonitation	ETL.	ETE-	-		8.
100.0011	1.00	Caincolulas	SCI1.	KTE-			10.0
101110		Cuinobán, ruinobán cherió)	HOLL.	ACTR.	(net post-is, net post-infinit-abl)		80
1202.454	18	Color-Hola	2211	ACCE.	Wene Kets, maps tests (1994) add		80
011.2394	-	(Culture India, rad)	R.T.L.	ETE-	(% manufactur@pail.mid	The Ass & DALLER REATING	84
NO.	cher	Chair Protein	XB	actest.			80
	14	Classic Dystations	4010	2013			80
113-11917	18	Climbe Dynilloure	4.11	ET2.			84
deria.	policio	DBH Fulymour Dria(Fullbrid)	LHER	227			8.
ab a	44	Diliphofoliate Robustane (SHPR)	400	S.FR.	-		8.

<u>"Morph" Movies of</u> <u>Protein Motions</u>

Server Produces Semi-realistic Minimized Interpolation (as MPEG, VRML, &c) between Any 2 Aligned Conformations, Analyzes the Motion

Server Flowchart: Steps in Interpolation,

2 Core Model

5 Movies Generated by the Server

			Easy	Тур	ical	Large	Impos
	Statistic	[Code]	ADH	Reco- verin	Pol-	GroEL	Dipth-
Innut	Motion ID	[ID]	adh	recvin	polbeta	aroel	d.
Structures	1st input frame	[imputframe0]	8ADH	1IKU	1BPD	1GRL	1001
calmonic	2nd input frame	[inputframel]	6ADH	1JSA	28PF	1AON	IMD
	Size (A) (in terms of window for rendering)	[max_x_or_y]	36	41	52	55	38
	Number of atoms	[natons]	2887	1639	2697	3993	4110
Overall	Overall RMS between	[RMSoverall]	2.0	13	8.6	16	22
Motion	Dotation (docrace)	[karan]	0.0 k	720	0.00	200	č
	Overall translation	[translation]	2.1	13	6.1	47	6
	of centroid (A)	1 Thomas W1		2		1	
	V en vonsienden (M)	[TransV]	20.02	-0.24	0.84	5 5	5 4
	Z	[Trans2]	1.5	-9.78	4.4	-10	4
1st	Number Cc/s in 1st core	[AlignedCoreCAs]	187	%	160	259	26
Core	RMS of 1st core (Å)	[AlignedCoreRMS]	0,40	3.0	0.92	1.4	0.3
	Max Cox displacement in 1st Core (Å)	[MaxCore Deviation]	0.66	7.6	1.7	4.2	0.6
2nd	Num. Ca's in 2nd core	[2ndCoreCAs]	061	94	160	260	26
Core	RMS of 2nd core (Å)	[2ndCoreRNS]	2.9	18	12	23	2
	Max Cα displacement in 2nd core (Å)	[Max2ndCore Deviation]	7.1	38	28	49	6
	RMS of 2nd core (Å) after fitting on 1st core	[2ndCoreRMS postrefitting]	1.6	11	11	10	18
Hinge	Number of putative hinges detected	[WHinges]	0	0	0	-	
	X position of 1st hinge (Å) rel. to centroid	[Minge000X]				4.7	-7.5
	Y position "	[HingeOOOV]			,	11	-0.9
	Z position "	[Minge000Z]			,	3.3	4
	1st Hinge Residue Selection	[Hinge000res]				380:403	352:379
	Sequence of 1st nutative hinde	[Decopoedury]				EVEMKE KKARVE	TNLFQV
	-					DALHAT RJUAVEE	RPAYSI GHKTQI
Screw	Distance betw. screw- axis (x0) & centroid (Å)	[x0ToCentroid Distance]	21	8.4	23	30	35
CIVU	X displacement centroid from screw axis (Å)	[X0x]	-0.16	-0.5	-2.5	17	-20
		[XDX]	-5.0	.ю 2	-5.2	-16	-2
	Z	[Z0x1]	-20	5.7	-22	19	-2
	Distance between screw axis and 1st hinge (Å)	[Hinge000x0dist]				26	4
Torsion	Max phi change (Max of Abs. degrees, 0º-180°)	[MaxPhi]	0 81	180°	180°	180°	180
- Selfin	Max psi change	[MaxPsi]	180°	180°	180*	180°	170
	Max alpha change	[MaxAlpha]	150°	180°	180°	180°	170

<u>Results of</u> the Server, Statistics & <u>Hinges</u>

<u>Analysis of</u> <u>Macromolecular</u> <u>Geometry & Motions</u>

1 Database of

Macromolecular Motions

Interface packing, shear v. hinge, web DB

2 Morph Movie Server

Restrained Interpolation between submitted endpoint conformations, standardized stats, hinge finder

3 Geometry Software (Volumes)

Voronoi volumes, relation to surface, radii problem, packing measurement

4 Standard Radii &

Volumes

Needed for volume calculation, 18 basic types, Sensitivity Analysis, radii set, atom selection criteria, structure set

W Krebs, C Chothia, J Tsai, Y Harpaz, R Taylor

bioinfo.mbb.yale.edu/MolMovDB

Quantify Packing and Contacts with Voronoi Polyhedra

- Each atom surrounded by a single convex polyhedron and allocated space within it
 - Allocation of all space (large V implies cavities)
- 2 methods of determination
 - Find planes separating atoms, intersection of these is polyhedron
 - Locate vertices, which are equidistant from 4 atoms

Calculating Volumes with Voronoi polyhedra

- In 1908 Voronoi found a way of partitioning all space amongst a collection of points using specially constructed polyhedra. Here we refer to a collection of "atom centers" rather than "points."
- In 3D, each atom is surrounded by a unique limiting polyhedron such that all points within an atom's polyhedron are closer to this atom than all other atoms.
- Likewise, points equidistant from 2 atoms form planes (lines in 2D). Those equidistant from 3 atoms form lines, and those equidistant form 4 centers form vertices.

Voronoi Volumes, the Natural Way to Measure Packing

Packing Efficiency

= Volume-of-Object

Space-it-occupies

= V(VDW) / V(Voronoi)

- Absolute v relative eff.
 V1 / V2
- Other methods
 - Measure Cavity Volume (grids, constructions, &c)

Calculating Voronoi Volumes

Integrating on a Grid

Or the simplest method for calculating volumes with Voronoi polyhedra is to put all atoms in the system on a fine grid. Then go to each grid-point (i.e., voxel) and add its infinitesimal volume to the atom center closest to it. This is prohibitively slow for a real protein structure, but it can be made somewhat faster by randomly sampling gridpoints. It is, furthermore, a useful approach for high-dimensional integration.

•Solving for the Vertices

- In the basic Voronoi construction, each atom is surrounded by a unique limiting polyhedron such that all points within an atom's polyhedron are closer to this atom than all other atoms. Points equidistant from 2 atoms lie on a dividing plane; those equidistant from 3 atoms are on a line, and those equidistant from 4 centers form a vertex.
- It is straightforward to solve for possible vertex coordinates using the equation of a sphere. (That is, one uses four sets of coordinates (x,y,z) and the equation (x-a) 2 + (y-b) 2 + (z-c) 2 = r2 to solve for the center (a,b,c) and radius (r) of the sphere.) One then checks whether this putative vertex is closer to these four atoms than any other atom; if so, it is a real vertex.

Collecting Vertices & Calculating Volumes

To systematically collect the vertices associated with an atom, label each one by the indices of the four atoms with which it is associated. To traverse the vertices on one face of a polyhedron, find all vertices that share two indices and thus have two atoms in common — e.g., a central atom (atom 0) and another atom (atom 1). Arbitrarily pick a vertex to start and walk around the perimeter of the face. One can tell which vertices are connected by edges because they will have a third atom in common (in addition to atom 0 and atom 1). This sequential walking procedure also provides a way to draw polyhedra on a graphics device. More importantly, with reference to the starting vertex, the face can be divided into triangles, for which it is trivial to calculate areas and volumes.

<u>Complexity from different atom sizes</u> requires new ways to calculate polyhedra

<u>Delauney Triangulation, the Natural</u> <u>Way to Define Packing Neighbors</u>

- Related to Voronoi polyhedra (dual)
- What "coordination number" does an atom have? Doesn't depend on distance
- alpha shape (Edelsbrunner)

• All Space Filled

If Voronoi polyhedra are constructed around atoms in a periodic system, such as in a crystal, all the volume in the unit cell will be apportioned to the atoms. There will be no gaps or cavities as there would be if one, for instance, simply drew spheres around the atoms.

• V = A d

Voronoi volume of an atom is a weighted average of distances to all its neighbors, where the weighting factor is the contact area with the neighbor.

• DT

- OBORDER OF D.T. is Convex Hull
- D.T. produces "fatest" possible triangles which makes it convenient for things such as finite element analysis.

Applications

- Nearest neighbor problems. The nearest neighbor of a query point in center of the Voronoi diagram in which it resides
- Largest empty circle in a collection of points has center at a Voronoi vertex

Properties & uses of Voronoi Polyhedra

- Maiahtina

<u>Packing defines</u> <u>the Protein</u> <u>Surface: Surface</u> <u>& Volume</u> Definitions Linked

- Voronoi polyhedra are the Natural way to study surfaces!
- The relationship between
 - ◊ accessible surface
 - o molecular surface
 - Delauney Triangulation (Convex Hull)
 - ◊ polyhedra faces
 - hydration surface

Defining Surfaces from Packing: Convex Hull and Layers of Waters

as a Time-averaged Water Layer Accessible Surface

<u>Analysis of</u> <u>Macromolecular</u> <u>Geometry & Motions</u>

1 Database of

Macromolecular Motions

Interface packing, shear v. hinge, web DB

2 Morph Movie Server

Restrained Interpolation between submitted endpoint conformations, standardized stats, hinge finder

3 Geometry Software (Volumes)

Voronoi volumes, relation to surface, radii problem, packing measurement

4 Standard Radii &

Volumes

Needed for volume calculation, 18 basic types, Sensitivity Analysis, radii set, atom selection criteria, structure set

W Krebs, C Chothia, J Tsai, Y Harpaz, R Taylor

bioinfo.mbb.yale.edu/MolMovDB

Uni	fied Ato	oms	Res	sidues	Parameters used in P	rotor Volume Derivation	
atom	radii	volume	aa	volume	Typing Scheme	Hybrid chemical and numerical typing with 18 basic types	I
C3H0b	1.61	9.70	Gly	63.8	Radii Set	ProtOr Radii, Tsai et al. (1999))
C3HOs	1.61	8.72	Ala	89.3	Diana Desitioning Mathed	Datio	
C3H1b	1.76	21.28	Val	138.2	Plane-Positioning Method	Ratio	
C3H1s	1.76	20.44	Leu	163.1	Atom Selection Criteria	BL+	
			lle	163.0	Structure Cot	SCOD (07 structures)	
C4H1b	1.88	14.35	Met	165.8	Structure Set	SCOP (87 structures)	
C4H1s	1.88	13.17			_		_
C4H2b	1.88	24.26	Pro	121.6	Pr	otOr	edt
C4H2s	1.88	23.19	His	157.5	<u> </u>		ale.
C4H3u	1.88	36.73	Phe	190.8	Dorom	ator Sati	b.y
			Tyr	194.6	Falalli	eler Sel.	hb
N3HOu	1.64	8.65	Trp	226.4			ifo.
N3H1b	1.64	15.72			Standar	d Radii & 🛛	ioir
N3H1s	1.64	13.62	Cyh	112.8			b,
N3H2u	1.64	22.69	Cys	102.5		limas	/ale
			Ser	94.2	<u>v01</u>	umes	6
N4H3u	1.64	21.41	Thr	119.6			199
			Asn	112.4	 Consistent F 	Radii, Typing,	Ľ.
O1HOu	1.42	15.91	Gln	146.9	and Volume	s for Packing	ste
02H1u	1.46	17.98	Asp	114.4		S TOT T ACKING	Ger
			Glu	138.8	Calculations	6	т К
S2HOu	1.77	29.17	Lys	165.1	• For compari	ison	Ma
S2H1u	1.77	36.75	Arg	190.3	i oi oompan		(C)

- -CH2- volume in cubic A
- 23.7 standard volume in protein core
- 23.6 mobile helix-helix interface (CS, TrpR)
- 24.8 grooves on protein surface (in high-res. struc. via SurFractal)
- <u>Sample Results</u> <u>of Volume</u> <u>Calculations:</u> <u>Significant but</u> <u>Small Changes</u> in Packing

- VDW ~ Packing
 ◊ Exponential Repulsion
- Many observations (>10K) in standard volumes gives small error about the mean (SD/sqrt(N))

atom	Count	Mean volume	SD	SD(%)	Minimum	Maximum	
GLY O	452	16.154	1.313	8.127	13.087	21.208	The Raw
C	685	9.652	0.715	7.404	7.627	12.060	
CA	272	23.470	1.924	8.200	19.386	29.000	Output
N	577	14.480	1.127	7.782	10.917	19.363	<u> Output</u>
Total	1986	63.756	2.685	4.211			173
ALA							
0	610	16.026	1.230	7.675	11.753	21.098	Volumes
С	1070	8.858	0.519	5.857	7.828	11.063	<u>voiumes</u>
CA	678	13.959	1.120	8.025	11.595	18.123	
N	786	13.872	1.038	7.483	11.564	18.014	Truing to find
CB	397	36.551	2.793	7.642	29.350	45.481	• Trying to find
Total	3541	89.266	3.452	3.867			Mean V
τ <i>τ</i> τ							• want High
0 UAV	622	15.998	1.176	7.351	13.257	20.987	Counts
C	1027	8.528	0.540	6.327	7.148	10.390	
CA	781	13.078	0.934	7.145	10.791	17.340	●IVIINIMUM
N	864	13.553	0.809	5.968	11.340	17.500	SD
CB	776	14.514	1.510	10.406	2.247	18.973	
CG1	481	36.320	2.937	8.086	16.906	46.985	
CG2	512	36.173	2.957	8.175	20.029	45.018	
Total	5063	138.164	4.780	3.460			
T.FIT							
	715	15 957	1 222	7 7 2 8	12 453	19 812	
C	1040	8.781	0.568	6.474	7.153	11.923	
C	_010	0.,01				,2_3	

• • •

Clustering into a set of Atom Types I

- Which atoms are equivalent? How many types valid?
- 18 types, [CNOS][34]H[123][bsu]

Chemical

Single-link

Multi-link

Clustering into a set of Atom Types II

- Which atoms are equivalent? How many types valid?
- 18 types, [CNOS][34]H[123][bsu]
- Residual to tell apart

43 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

Diff	erer	<u>nt</u>	Atom T	ype & Symbol	Bondi 1968	Lee & Richards 1971	Shrake & Rupley 1973	Richards	Chothia 1975	Rich- mond & Richards 1978	Gelin & Karplus 1979	Dunfield et al. 1979	ENCAD derived 1995	CHARMM derived 1995	Tsai et al. 1998
		c													
Se	10 D1	t I	-CH2	Aliphatic methyl	2 00	1 80	2 00	2 00	1 87	1 90	1 95	2.13	1 82	1 88	1 88
			-CH ₂ -	Aliphatic, methyl	2.00	1.80	2.00	2.00	1.87	1.90	1.90	2.23	1.82	1.88	1.88
			>CH-	Aliphatic, CH	_	1.70	2.00	2.00	1.87	1.90	1.85	2.38	1.82	1.88	1.88
			=CH	Aromatic, CH	_	1.80	1.85	*	1.76	1.70	1.90	2.10	1.74	1.80	1.76
	aun		>C=	Trigonal, aromatic	1.74	1.80	*	1.70	1.76	1.70	1.80	1.85	1.74	1.80	1.61
			$-NH_3+$	Amino, protonated	-	1.80	1.50	2.00	1.50	0.70	1.75		1.68	1.40	1.64
C3H0	1 61		$-NH_2$	Amino or amide	1.75	1.80	1.50	-	1.65	1.70	1.70		1.68	1.40	1.64
	1.01		>NH	Peptide, NH or N	1.65	1.52	1.40	1.70	1.65	1.70	1.65	1.75	1.68	1.40	1.64
C3H1	1.76		=0	Carbonyl Oxygen	1.50	1.80	1.40	1.40	1.40	1.40	1.60	1.56	1.34	1.38	1.42
			-OH	Alcoholic hydroxyl	-	1.80	1.40	1.60	1.40	1.40	1.70		1.54	1.53	1.46
			-OM	Carboxyl Oxygen	-	1.80	1.89	1.50	1.40	1.40	1.60	1.62	1.34	1.41	1.42
C4H1	1.88		-SH	Sulfhydryl	-	1.80	1.85	-	1.85	1.80	1.90		1.82	1.56	1.77
C4H2	1.88		-S-	Thioether or –S-S-	1.80	-	-	1.80	1.85	1.80	1.90	2.08	1.82	1.56	1.77
C4H3	1.88							7386	J. Phys.	Chem.,	Vol. 10	0, No. 18	8, 1996		2
• • • • •												,	,		2
N3H0 N3H1 N3H2	1.64 1.64 1.64	<i>f</i> =	$=\sum_{i}$	$\sum_{j \leq i} w_{ij}(d_{ij})$	- [<i>1</i>	r _i +	$r_j])^2$		Dbservation	15				\sim	
N4H3	1.64		R	Taylor at	CC			n _k			T				1000
O1H0 O2H1	1.42 1.46	(optil	mzea r s	τΟ	nt a	5	2	4	A				Dist	
S2H0 S2H1	1.77 1.77							Figure the hei	2. Schen ght at the	natic r maximu	tation	of the def histogram	inition of	d. n_k repr	resents

							PDB S	ets"							
ProtOr	scc	ур	Stand	lard	Hig	Ч	Lov	N	NMI	R	Nev	N	Obsol	ete	
atom type	VOI.	SD	VOI.	SD	VOI.	SD	VOI.	SD	VOI.	SD	VOI.	SD	VOI.	SD	
C3HOb	9.64	0.72	9.67	0.68	9.65	0.68	9.68	0.69	9.53	1.05	9.78	0.79	9.83	0.86	
C3HOS	8.66 21.33	0.58	8.68 21_38	0.59	8.65 21.36	0.57	8.70 21.39	1.91	8.65 19.40	0.80	8.77 21.26	2.11	8.84 20.96	0.76 2.30	
C3H1s	20.45	1.76	20.41	1.77	20.27	1.72	20.50	1.80	18.48	2.78	20.42	2.02	20.43	2.21	
C4H3u	14.35	1.35	14.41	1.22	14.38	1.20	14.43	1.23	13.89	1.55	14.40	1.48	14.42	1.59	
C4H1b	13.14	0.97	13.17	0.96	13.20	0.94	13.15	0.97	13.20	1.27	13.11	1.11	13.18	1.20	
C4H1s	24.14	2.07	24.25	2.13	24.11	1.95	24.33	2.21	20.48	5.89	24.26	2.43	24.07	2.76	
C4H2b	23.17	2.35	23.29	1.94	23.28	1.96	23.29	1.93	19.13	6.40	23.14	2.23	22.92	2.46	
C4H2s	36.84	3.24	36.94	2.99	36.93	3.00	36.94	2.98	30.38	8.26	36.43	3.75	35.76	3.95	. *
N3HOu	8.62	0.59	8.57	0.65	8.60	0.70	8.56	0.6	Set	Numbe	Ϋ́,			Ider	difier
N3H1b	15.65	1.55	15.73	1.70	15.55	1.48	15.80	1.79			135	l, laaj, laa	ap, lake, l	arb, 1bbl	1, 1bp2, 1ccr, 1cdp, 1cmb, 1cpc, 1crn,
N3H1s	13.54	0.99	13.53	1.00	13.52	0.97	13.53	1.0			lgp	r. 1hbg. 11	hel. Ihne.	lifc, ligd.	lezin, mai, mas, maa, iget, iget, 11mb, 11z1, 11z3, 1mba, 1mbd, 1ofv.
N3H2u	22.61	2.36	22.07	2.13	22.12	2.22	22.04	2.0			lon	nd, Ipaz,	lpgx, lpk	4, 1plc, 1	pn, 1ppt, 1ptx, 1rcf, 1rdg, 1rms,
N4H3u	21.56	1.28	21.03	1.29	20.30	0.55	21.76	1.40			Irol	p, Irpg, Ir	po, Irro,	lsar, lsgt	1snc, 1st3, 1thm, 1ubq, 1ycc, 256b,
O1HOu	15.91	1.29	15.92	1.28	15.87	1.23	15.94	1.30	Standard	130	2fcr	, 2fx2, 2gt	pr., zaza, a pp. 2hhb, 2	ihl, 2ltn,	, zeuv, zepp, zeie, zeyp, zeir, zio4, 2mem, 2mhr, 2msb, 2ovo, 2por, 2prk,
02H1u	18.11	1.78	18.09	1.86	18.10	1.97	18.09	1.79			2rhe	e, 2rn2, 2s	ga, 2sn3,	2trx, 2utg	2wrp, 2zta, 3app, 3b5c, 3bcl, 3c2c,
SZHOU	29.29	2.68	28.79	2.67	28.66	2.68	28.90	2.6			4icb	, auri, aci	tp. 5cpa. 5	cvt, 5p21	5pal, 5pti, 5rub, 5rxn, 5tim, 6ebx,
NLH7S	30.82	3.48	35.93	2.44	37.15	∠.4b	35.71	۲. ن≊			6rlx	, 6rxn, 6x	ia, 7aat, 7i	sa, 8dfr,	3fab, 8rxn, 9pti, 9rnt, 9wga
	\mathbf{C}	2	nu	<u>n</u>	D.				SCOP	87	2sn 2ph 1po 1ka 1kn 1kn	3, Icus, 7r y, 3ebx, 3 a, Irie, Iv a, Imrj, Ij n, Imrj, Ij p, Ilcp, Ij b, Illp, Ir b, Illp, Ir t, Ithw, 2	sa, 1rro, 1 sdh, 2end vhi, 2ctb, 2 phc, 1ptf, php, 1snc, nol, 1pdo, bbk, 3cla	aac, 1931, , 1xso, 1cl 2eng, 2ow 1smd, 1w 1sri, 2wr 1sri, 2wr 1rop, 1ta	1utg, 5p21, 1hms, 1xyz, 256b, 2olb, a, 1cyo, 1edm, 1ezm, 1isu, 1mla, b, 2cba, 3grs, 1lit, 1ra9, 1tca, 1csh, rc, 2dri, 2ilk, 2sil, 3pte, 4fgf, 2cpl, rc, 2dri, 2ilk, 1ctf, 1fnb, 1gai, 1gof, b, 1krn, 2trx, 1ctf, 1fnb, 1gai, 1gof, d, 1tfe, 1vhh, 1vsd, 2act, 1fkd, 1chd,
	, (<u>; </u>	Ĭ	2							laal 1bw 1erg	b, 1aaf, 1a /4, 1cdb, 1 2, 1erh, 1fi	ica, 1acp, cdn, 1cis, ht, 1fkr, 1f	lafp, lah Iclb, lcrj ks, lfkt, l	d, 1ale, 1alf, 1bbo, 1bus, 1bw3,), 1crq, 1crr, 1csy, 1csz, 1ctl, 1dhm, frz. 1gb1, 1gbr, 1gfc, 1gfd, 1hcc,
		Ĭ	Ū Ū	D T	4				NMR	125	1il8	n, 1hme, 1 , 1iml, 1ir)i. 1mbk. 1	p, 1kb7, 1hor p, 1kb7, 11 mef. 1ncp	n, 1hrq, 1 db8, 11d1, Ineh. 1r	hrr, Ihsm, Ihsn, Ihue, Ihum, Ihun, Udr, Ilip, Ilpt, Imbe, Imbf, Imbg, 20. Iner: Inhm. Inhn. Inil. Inim.
											Inn	uf, Inmg, c. Ipih. I	Inoe, Iod	p, lodq, 1 1pog. 1p	odr, loef, loeg, lpan, lpao, lpcp, a. lprr. lprs. lpse. lpsf. lowe.
	S	tri			D.						lqw	f, lrht, lr ltvs, ltv	ip, Irod, t, Iums, I	umt, lutr	, Isap, Isrl, Isrm, Istu, Isxi, Itam, Ivnd, Izer, 2abd, 2bus, 2gb1, 2gva, 5 208 2act 2zaf 2act2
											116 1afs	l, lact, la 2. lace. la	lp, 1alr, 1a fn. 1ak3.	anh, 251c lasi. 1aza	156b, 1apd, 2bcl, 1abk, 1abp, 1abx, 1baa. 1bil. 2grs. 1cab. 1cae. 1cd4.
		Ŋ	D +	0					Current	69	1ci2	f. lgn5. 2	ln, 1dhb, 1 hvt. 1gsr.	ldri, 1eip, Igvi, 1hft	lend, 7atc, 1fnr, 1gap, 1gbp, 1gcr, 1hid. 1hmg. 1hmx. 1lrd. 3fab. 1mev.
											liths	nf, Iora, I , Itct. Itr	pab, Ipel, t. 1vhx. 2a	lpgk, lp adk. 1vaa	hy, 1ptc, 1r04, 1r1e, 1rsl, 1sod, 1srt, 1ts1, 1ada
											lab	e, Icdh, I	eri, 1fnb,	11mb, 216	, 256b, 2abk, 2abx, 2ace, 2act, 2ada,
									Oheolata	60	2afg 2ci2	2, 2afn, 2a , 2cpk, 2c	k3, 2alp, yh, 2dhb,	2alr, 2anł 2dri, 2eip	, 2apd, 2asi, 2aza, 2baa, 2cab, 2cae, 2end, 2gmf, 2gn5, 2gsr, 2gyi, 2hft,
									Coontere	9	2hic 2rsl	1, 2hmg, 2 2sod. 2s	hmx, 2me rt. 2tbs.2tc	v, 20mf, t. 2trt. 2t	ora, 2pab, 2pel, 2phy, 2ptc, 2r04, 1. 2vaa, 2vhx, 351c, 3adk, 3bcl
											3bjl.	. 3cln, 3ga	p. 3gbp. 3	grs, 3hvt,	3pgk, 4gcr, 5at1, 7fab

SensitivityBAnalysisImage: SelectionsforBIDifferentBIAtomBISelections

- This set contains protein atoms that are buried by other protein atoms and by ligands and/or cofactors. In selecting this set, the crystallographically determined water structure is ignored: *i.e.* the protein atoms used are those that have zero accessible surface area (Lee & Richards, 1971, Connolly, 1983) as calculated using just the atoms in the proteins, ligands, and cofactors.
- **BL**: This set contains atoms that are buried as defined by the B set *less those whose volumes are affected by ligands and cofactors*. The set was selected by removing from set B those atoms whose volumes are different when they are calculated in the presence and absence of ligands and cofactors. The L in the name of this set indicates this extra filtering of atoms.

BD: The atoms excluded from this set are (i) all those that have surface accessible to the solvent (as in set B) and (ii) all those in contact to these surface atoms. Thus both surface atoms and those that form the first layer below the surface are removed from the calculation to leave only those that are deeply buried. Therefore, the volumes produced by this set of atoms are named BD, where the D indicates that the resulting set of atoms are buried deep in the protein.

																-					
										Ator	n Selec	tion:									
		base			B+			B-			BL+			BL-			BT			BD	
	All atom poly	ic groups t intedra car onstructe	for which n be d	Atomic access we	groups wi iblo surfac tors includ	th zero se area, led	Atomic access wat	groups wi blo surfac ters exclus	ith zero ce area, ded	Some at atomic non-prot	s B+ excep groups to tein atomá	pt those sathing c groups	Same a atomic non prot	s B- excep groups to toin atomic	t those uching groups	Same touch at	as B+ less ing the exp ormic group	those xosed 15	Same a atomic non-solo	ts BL+ less groups to ctod atomi	uching ic groups
ProtOr type	Count	Vol. ^b	SD	Count	Vol. ^b	SD	Count	Vol. ^b	SD	Count	Vol. ^b	SD	Count	Vol. ^b	SD	Count	Vol. ^b	SD	Count	Vol. ^b	SD
C3H0b	12148	11.11	2.55	6539	9.79	0.73	7802	9.78	0.72	6090	9.79	0.74	4255	9.67	0.68	4618	9.68	0.69	1434	9.64	0.63
C3HOs	24588	9.05	1.08	18341	8.79	0.64	20429	8.79	0.62	17911	8.78	0.64	13260	8.68	0.59	14011	8.69	0.59	3647	8.73	0.58
C3H1b	5129	23.87	6.65	3074	21.39	1.00	3668	21.40	1.08	2773	21.40	1.87	2363	21.38	1.89	2376	21.38	1.89	1046	21.33	1.04
C3H1s	5902	23.95	7.79	2941	20.56	1.82	3874	20.57	1.79	2627	20.56	1.81	1938	20.41	1.33	1973	20.43	1.78	367	20.52	1.21
C4H1b	10248	16.05	4.12	5974	14.47	1.23	7440	14.47	1.23	5719	14.46	1.23	4579	14.41	1.22	4634	14.42	1.22	1947	14.37	1.17
C4H1s	20309	14.66	3.25	10002	13.27	1.01	14128	13.31	0.99	10455	13.26	1.00	6200	13.17	0.96	0350	13.17	0.97	3274	13.17	0.90
C4H2b	4391	30.62	11.82	1712	24.41	2.19	2411	24.43	2.20	1564	24.46	2.20	1152	24.25	2.13	1162	24.28	2.14	559	24.13	2.06
C4H2s	21531	29.18	10.06	6421	23.52	2.01	10234	23.48	1.97	5927	23.54	2.00	3940	23.29	1.94	4010	23.30	1.94	1989	23.33	1.00
C4H3u	12891	41.84	11.13	5711	36.96	3.06	7675	36.87	3.05	5241	36.98	3.02	4160	36.94	2.99	4179	36.94	2.99	1890	36.74	2.99
N3HOu	1119	9.14	1.92	848	8.80	0.74	948	8.70	0.73	830	8.79	0.72	415	8.57	0.65	501	8.58	0.66	107	8.48	0.56
N3H1b	2047	20.18	8.98	769	15.76	2.42	1212	15.74	2.02	643	16.07	1.98	437	15.73	1.30	449	15.75	1.73	228	15.31	2.09
N3H1s	25651	14.87	3.91	16057	13.77	1.19	20712	13.72	1.06	15354	13.76	1.18	11180	13.53	1.00	11224	13.53	1.00	3282	13,74	0.99
N3H2u	2226	33.13	15.23	406	23.05	2.04	878	22.82	2.33	345	23.03	2.89	128	22.07	2.13	129	22.08	2.13	142	22.54	2.10
N4H3u	401	41.77	22.36	26	20.20	6.51		21.32	3.77	19	23.07	3.40	6	21.03	1.29	6	21.03	1.29	9	21.56	2.61
01HOu	26430	20.84	10.21	12545	16.14	1.55	18670	16.07	1.45	11701	16.15	1.51	8847	15.92	1.26	8805	15.92	1.28	2759	16.07	1.30
02H1u	3299	25.29	12.66	910	18.63	2.38	1042	16.08	1.93	790	18.67	2.34	477	18.09	1.86	479	18.10	1.87	369	17.82	1.49
S2HOu	843	32.05	9.04	507	28.68	2.87	610	28.64	2.84	461	28.80	2.61	352	28.79	2.67	354	28.80	2.67	115	28.16	3.20
\$2H1u	167	35.75	8.92	94	33.32	4.85	119	33.39	5.38	- 55	36.23	2.62	47	35.93	2.44	47	35.93	2.44	34	33.92	3.98

Server (Chacko)

Volumes, Polyhedra, Surfaces, Packing Eff., LSQ Fits, Axes, Angles, Distances, Contacts/Hbonds, Crystal Sym.

Incredulase

<u>Analysis of</u> <u>Macromolecular</u> <u>Geometry & Motions</u>

1 Database of

Macromolecular Motions

Interface packing, shear v. hinge, web DB

2 Morph Movie Server

Restrained Interpolation between submitted endpoint conformations, standardized stats, hinge finder

3 Geometry Software (Volumes)

Voronoi volumes, relation to surface, radii problem, packing measurement

4 Standard Radii &

Volumes

Needed for volume calculation, 18 basic types, Sensitivity Analysis, radii set, atom selection criteria, structure set

W Krebs, C Chothia, J Tsai, Y Harpaz, R Taylor

bioinfo.mbb.yale.edu/MolMovDB

