Understanding Protein
Function on a
Genome-scale through
the Analysis of
Molecular Networks

Mark B Gerstein
Yale

slides at
Lectures.GersteinLab.org

(See Last Slide for References
& More Info.)




The problem: Grappling with
Function on a Genome Scale?
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« >25K Proteins in Entire Human Genome

originally characterized on chr. 22
(with alt. splicing)

[Dunham et al. Nature (1999)]

250 of ~530



EF2 YEAST

Traditional single

molecule way to integrate

Descriptive Name:
Elongation Factor 2

Lots of references
to papers

Summary sentence
describing function:
This protein promotes the
GTP-dependent
translocation of the
nascent protein chain from
the A-site to the P-site of
the ribosome.

File

evidence & describe
function

Edt View Favortes Tools Help

Links > | Norton Antivirus ()

r = e > Datab.
' E @k Bl Z4 A

y :n !I b ‘\rO\t Text Search UniProt Knowledgebase
theN\yniversal protein knowledgebase _.

home About UniProt Getting Started Searches/Tools Databases Support/Documentation

General information about the UniProt/Swiss-Prot entry

Entry name EF2_YEAST
Primary accession number P32324
Entered in Swiss-Prot Release 27, 01-OCT-1993

Sequence was last modified Release 27, 01-0CT-1993

Annotations were last modified | Release 47, 01-MAY-2005

Protein description

Protein name ‘ Elongation factor 2
Synonyms ‘ EF-2
References
[1] | NUCLEOTIDE SEQUENCE (EFT1 AND EFT2).

MEDLINE=92112760; PubMed=1730643; [NCBI, ExPASy, EBI, Israel, Japan]
Perentesis J.P., Phan L.D., Laporte D.C., Livingston D.M., Bodley 1.W.;
“Saccharomyces cerevisiae elongation factor 2. Genetic cloning, characterization of
expression, and G-domain modeling.”;

G
FUNCTION This protein promotes the GTP-dependent translocation of the nascent protein chain from
the A-site to the P-site of the ribosome.

SUBCELLULAR LOCATION Cytoplasmic.
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Some obvious issues in scaling single
molecule definition to a genomic scale

« Fundamental complexities
() Often >2 proteins/function

() Multi-functionality:
2 functions/protein

{ Role Conflation:
molecular, cellular, phenotypic



Some obvious issues in scaling single

 Fundamental complexities
() Often >2 proteins/function

¢ Multi-functionality:
2 functions/protein

() Role Conflation:
molecular, cellular, phenotypic
* Fun terms... but do they scale?....
() Starry night (P Adler, '94)

[Seringhaus et al. GenomeBiology (2008)]
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Hierarchies & DAGs of
controlled-vocab terms
but still have issues...
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[Seringhaus & Gerstein, Am. Sci. '08]
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Towards Developing Standardized
Descriptions of Function

» Subjecting each gene to standardized expt. and
cataloging effect

() KOs of each gene in a variety of std. conditions => phenotypes
( Std. binding expts for each gene (e.g. prot. chip)

 Function as a vector nucleic

acids proteins

protein 1 10| O 0 0 0 0 |...... 0 0 0o ...
protein 2 0 0.9 0 0 0 0 ... 0 0 0o ...
protein3 | 1.0 0 1.0 0 0 0 |..... 0 0 0o ...
protein 4 0 0 0 0 08| 0 |..... 0 0 1.0 ...
protein5 | 1.0| O 0 0 0 0 |...... 0 0.9 0o ...
proten6 | 09, o | | ... L
protein 7 ocjo8y { t + t--d 0 ]

Interaction Vectors [Lan et al, IEEE 90:1848]



Networks (Old & New)

Fringe: Vital in boundary formation Itch: linked to

RBPMS o CSNK2A1
in developing fly wing. \_itchy skin in mice /
— B - : s EPSs CSNK2A2
Numb: mutations impair 2 " TPs3

' ~ sensory organs in flies DLK1 Dvl AP2A

Dvl T & A |

: ' Fringe GS,KS\B Numb MDM2

Fringe Numb

| s Deltex | GRB2

e B Deltex
Delta Y Notch ] R Delta CTNNBT1 | MAML
Notch: with defects, flies APP
A A [ ,

iy develop notches in wings ZL —— SMAD3

Serrate Serrate - — PCAF | ™~ LEF1
/| PSE2 = PSEN RN .
~ ) vvi LYY skip :
/ Skl Biliis 4 BLET NCSTN — APH-1
o CSL RELA CSL
TAGE e G22P1
| ABLA1
DLG1 APBA1

Classical KEGG pathway

Same Genes in High-throughput Network

[Seringhaus & Gerstein, Am. Sci. '08] %



Networks occupy a midway point in
terms of level of understanding

500000

(c)'09

1D: Complete
Genetic Partslist

~2D: Bio-molecular 3D: Detailed
Network structural
Wiring Diagram understanding of
cellular machinery

[Fleischmann et al., Science, 269 :496] [Jeong et al. Nature, 41:411]



Networks as a universal language

- Internet
[Burch & Cheswick]

“ Electronic
Food Web Circuit

Disease Neural Network

: .. Spread 3 [Cajal] m
[KrebS] Albert-Lészlé 257

Protein :

Interactions :
[Barabasi] o g o' g Social Network Q_I




MICHAEL BROWN, FEMA,
FEDERAL AGENCIES.

“It's the responsibiliy of faith-based

Using the

| | |
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Finding the

causal regulator

(the "Blame

Game")

“To the extent that the federal
govemment didn't fully do its
Job right, | take responsibility.”

PEOPLE WHO
DION'T
EVACUATE

“The anthem of the self-
loathers. ... You can never
s ™ blame victims. You can

never blame the poor. ...
Even those who didn't get
out of New Orloans, it's not
their fault. Even those that
could and didn't it's not
their fault, it's not their
faul*

“You cannot read a newspaper
without the gloating and the
happiness with which the
mainstream pross is reporting tho
president’s approval numbers.

B8 Marsh The New York Tames

STATE HEALTH AND INDIVIDUALS AND Lobbyist 1 CHICAGO
PENSION BOARDS FUND-RAISERS w b TRIBUNE Tribune
Financial
4 Advisor
Stuart A/Lanve, hicags Tribume | -
Levine Individual A Fund-raiser A 00 e
Board ‘ X '
member ~ -
g =z ph Editorial
William Cellini i Board
Bo, ber
Individual B Engineering
Firm 1
Wiinois Wrigley A
Health Field —
Facilities A
_ - Hospital Sam Zell
Planning William Cellini Ali Wie
- T i Ata Executive 1 RIS
Board TRS Board member SR Contributor 1 Owner of the

Contractor 1

Tribune Company

[NY Times, 2-Oct-05, 9-Dec-08]
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Combining networks forms an ideal way
of integrating diverse information

l . . —— Metabolic

............. » Transcriptional
regulatory
network

— Physical protein-
protein Interaction :

................ Co-expression
Relationship

Part of the Genetic interaction

TCA cycle (synthetic lethal)
Signaling pathways

N
~




Outline: Molecular Networks

Why Networks?

Predicting Networks eas)
() Propagating known information

Dynamics & Variation of
Networks

¢ Across cellular states )

() Across environments
(in prokaryotes)

Protein Networks &
Varlathn (yeast & humans)

1 3 - Lectures.GersteinLab.org ¢



Example: yeast PPI
network

Actual size:

() ~6,000 nodes
— Computational cost: ~18M pairs

¢ Estimated ~15,000 edges NIRRT o
— Sparseness: 0.08% of all pairs S RS S )
(Yuetal., 2008) Yoo ==sssssssss

Known interactions: S EET T T T

( Small-scale experiments: accurate but few
— Qverfitting: ~5,000 in BioGRID, involving
~2,300 proteins

( Large-scale experiments: abundant but
noisy
— Noise: false +ve/-ve for yeast
two-hybrid data up to

45% and 90% (Huang et al., 2007)

(c)'09
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Types of Networks

aoscf“""m factors and Cofacy,
<«

)

IRX4

Target genes

Regulatory networks

Interaction networks

Nodes: proteins or genes
Edges: interactions

[Horak, et al, Genes & Development, 16:3017-3033]
[DeRisi, Iyer, and Brown, Science, 278:680-686]
[Jeong et al, Nature, 41:411]
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Metabolic networks

15.
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Predicting Networks

How do we construct large molecular networks?
From extrapolating correlations between functional genomics data with fairly
small sets of known interactions, making best use of the known training data.

(c) '09
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Network prediction: known information

Known interactions

Known non-interactions

Unknown

17.



Network prediction: features

« Example 1: gene expression

1
x,=(0.2,2.4,1.5, .

)
x,=(0.8,2.2,1.5, ...)
L) )

x5 =(43,0.1,7.5, .

sim(X;, X,) = 0.62 3
sim(X;, X3) =-0.58

Similarity scale:

Gasch et al., 2000 1 _ -1

@/ N9

18



Network prediction: features

« Example 2: sub-cellular localization

=

sim(x, x,) = 0.81
sim(X,, X;3) =0.12
http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif

Similarity scale:
1

19.



Network prediction: data integration

20-



Learning methods

An endless list:

» Docking (e.g. Schoichet and Kuntz 1991)
Evolutionary (e.g. Ramani and Marcotte, 2003)
Topological (e.g. Yu et al., 2006)
Bayesian (e.g. Jansen et al., 2003)
Kernel methods
( Global modeling:
« em (Tsuda et al., 2003)
« kCCA (Yamanishi et al., 2004)
« kML (Vert and Yamanishi, 2005)

» Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
¢ Local modeling:

» Local modeling (Bleakley et al., 2007)

Let’s compare in a public challenge!
(DREAM: Dialogue for Reverse Engineering Assessment and Methods)

21



DREAMS3: in silico requlatory network reconstruction

Actual network Expression data Modeling Predictions

I
I
. I
. |
5w I
‘ | :
E:‘ ref-2s ref-s ref ref+s Jeth
e X Prob(signal|point)

/@.
O/ = 2d((point — ref) / s) — 1
Deletion strains Noise models
=
af g [TT] |
%82 KNS e a _1+eXP(a,0+Z§a,kyk) -
0; e NN igg X .
S S %ﬂ(ybb ]H(yb]y
Time series after Expression rate
initial perturbation models
2
ﬁ Accuracy E.Coli 1 E. Coli 2 Yeast 1 Yeast 2 Yeast 3
14
a (AUC)
g Size-10 0.928 0.912 0.949 0.747 0.714
-;-3' Size-50 0.930 0.924 0.917 0.792 0.805
Size-100 0.948 0.960 0.915 0.856 0.783

()09
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Our work: efficiently propagating

known information

Training set expansion

« Motivation: lack of training examples
» Expand training sets horizontally
Multi-level learning

 Motivation: hierarchical nature of
interaction

« Expand training sets vertically

DREAMS in silico regulatory network
reconstruction challenge

Local model 1

Local model 2

PPI predictions

!

!

RRI predictions

()09
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Global vs. local modeling

Example - Pairwise kernel:
consider object pairs instead
of individual objects %
%
Problem: O(n?) instances, : © © g
(@
O(n*) kernel elements ©)

24



Global vs. local modeling

Model for node 3:

Problem: insufficient and unevenly distributed training
data (what if node 3 has no known interactions at all?)

25



Prediction propagation

» Goal: keep the flexibility of
local modeling, but tackle the
data sparsity problem

* Motivation: some objects
have more examples than
others

* Our approach:

() Learn models for objects with
more examples first

( Propagate the most confident
predictions as auxiliary
examples of other objects

[Yip and Gerstein, Bioinformatics ('09)]



Prediction accuracy (AUC)

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int

Maode 1

direct 58.04 66.55 64 .61 57.41 51.62 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 5048 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 556.90 53.13 63.74 68.20 81.65
local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
local+pp 73.89 75.25 7743 75.35 71.60 71.51 74 .62 71.39 83.63
local+ki 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
local+pp+ki 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59 I

Observations:
» Highest accuracy by training set expansion

 Over fitting of local modeling without training set

expansion

 Prediction propagation theoretically related to co
-training (Blum and Mitchell, 1998)

() Semi-supervised (Similarity with PSI-BLAST)

[Yip and Gerstein, Bioinformatics ('09)]

27



From horizontal to vertical

Training set expansion

« Motivation: lack of training examples
» Expand training sets horizontally
Multi-level learning

 Motivation: hierarchical nature of interaction
« Expand training sets vertically

Local model 1

Local model 2

PPI predictions

!
!

RRI predictions

28



Protein interaction

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

[Yip and Gerstein, in revision]

29.
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Domain interaction

Pfam domains: PFO0107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

[Yip and Gerstein, in revision]

30-
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Residue interaction

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

[Yip and Gerstein, in revision]

31-
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Combining the three problems

Protein <
interactions
- ] l___i___l I__L__I_I
I I I I I I
| | | | | |
. | | | | | |
Domain | | | | | |
interactions I I I I I I
I I I I I I
I I I I I I
o | I___I___I I__l___f_l .
» | Residue
ﬁg i interactions "
i. Independent levels ii. Unidirectional flow iii. Bidirectional flow

32
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Empirical results (AUCs)

Highest accuracy by bidirectional flow

Additive effect: 2 vs. 3 levels

[Yip and Gerstein, in revision]

Ind. levels Unidirectional flow Bidirectional flow
Level PD PR DR PD PR DR PDR
Proteins 71.68 72.23 72.50 72.82
Domains 53.18 61.51 71.71 68.94 71.20
Residues 57.36 54.89 53.81 72.26 63.16 77.86
A

1 rL1 1 #j1 1 |}—T1

I I | I | I | I | I | I

_— _— —_ | _—

()09
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Network Dynamics #1:
Cellular States

How do networks change across different cellular states?
How can this be used to assign function to a protein?

34 - Lectures.GersteinLab.org ¢



Dynamic Yeast TF network

Transcription Factors e Analyzed network as a static

entity

e But network is dynamic

() Different sections of the network

are active under different cellular
conditions

e Integrate gene expression data

Target Genes

Luscombe et al. Nature 431: 308

35
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Gene expression data for five cellular
conditions in yeast

Cellular condition

Cell cycle

Multi-stage |<

Sporulation

Diauxic shift

Binary < | DNA damage

Stress response

[Brown, Botstein, Dauvis....]

36-



Backtracking to find active sub-network

o/'\ /)

/ e Define differentially expressed genes

A
| —’/r / e Identify TFs that regulate these genes
X o Identify further TFs that regulate these TFs-
— -
T — V
Active regulatory sub-network
y

37-



Network

usage under different conditions

static

Luscombe et al. Nature 431: 308

38 - Lectures.GersteinLab.org ¢



Network usage under different conditions

cell cycle

39.
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Network usage under different conditions

sporulation

60. (9)

ov



Network

usage under different con

diauxic shift

ditions

41.
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Network usage under different con
DNA damage

ditions

42.

()09



Network usage under different conditions

stress response

L W e
T i — = \

60. (9)

|

—

£



Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage

Stress

SANDY:

1. Standard graph-theoretic statistics:
- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:

- Hub usage
- Interaction rewiring

3. Statistical validation of results

Luscombe et al. Nature 431: 308

44.
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Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage

Stress

SANDY:

1. Standard graph-theoretic statistics:
- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:

- Hub usage
- Interaction rewiring

3. Statistical validation of results

45.
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Global topological measures

Indicate the gross topological structure of the network

O
O

\4

Degree (K) Path length (L) Clustering coefficient (C)
5 2 1/6

Interaction and expression networks are undirected

[Barabasi]

46-



© TFs
O Targets

Global

topological \L/

measures for

: v 4
directed 471§A
networks
In-degree Out-degree
3 5

Regulatory and metabolic networks are directed

47.-



Scale-free networks

Power-law distribution

log P(k)‘

log(Frequency)

Jo— P(k)~k"
V )
\ 7 \W/
-}% TN AN
NS SN
_ 1k 7\ _ N
log(Degree) o2k .

Hubs dictate the structure of the network

[Barabasi]

48



114

150 Analysis of
| condition-
specific
P ae 16 s subnetworks
ndegree — in terms of
e 2 global

Pathlength topological
015 0.4 statistics

Outdegree

2.0 1.9

Clustering
coefficient
5
© = o
S © © 8 e
1) 2 X © » O
s & : 8% 2§ g
"— wied
o 7 Qv 0o n 2
< - >
Multi-stage - Binary
Controlled, ticking Quick, large-scale
over of genes . turnover of genes Luscombe et al. Nature 431: 308

at different stages

49



Cell cycle Sporulation Diauxic shift DNA damage Stress

multi-stage conditions

()
\ v,vo
=)
v i )
L4
)
Summary
less pronounced Hubs more pronounced
longer Path Lengths shorter
more TF inter-regulation less
complex loops (FFLs) Motifs simpler (SIMs)

50 - Lectures.GersteinLab.org ¢



Transient Hubs

100

1l &

'y
o

Number TFs

0.1

1 10 100 1000
Number outgoing connections

e Questions:

\

\

Regulatory hubs

{ Do hubs stay the same or do they change over between conditions?

¢ Do different TFs become important?

Luscombe et al. Nature 431: 308

e Our Expectations

() Literature:
e Hubs are permanent features of the network regardless of condition

¢ Random networks (sampled from complete regulatory network)

e Random networks converge on same TFs
e 76-97% overlap in TFs classified as hubs (/e hubs are permanent)

()09
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cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

cell cycle
sporulation
diauxic shift
DNA damage
stress response

s TR

YMRO16C
YLR183C
YIL131C
SWI4
YDR451C
SWI6
STE12
MBP1
MCM1
YDR146C
YLR131C

UME6
IME1l
YNL216W
SIN3
YIR023W
YPLO38W
YNL103W
YMR021C
CBF1
YBL021C
YIL122W

HAP4
HAP2

YHR206W
YAPL
HSF1
YPLO89C
YCRO65W
CINS5
YDR310C

YDR259C
MSN2
YDR501W
MSN4
YGLOS6W
PDR1
YLR403W
YGLO71W
YIR018W

YKL043W
YLRO13W
YGL209W
YMLO27W
YFR034C
YELOOOSC
YBR04SC
YGLO035C
YKL112W
YDR043C
YPRO65W

<

transient hubs

permanent hubs

Some permanent hubs
() house-keeping functions

Most are transient hubs

¢ Different TFs become key
regulators in the network

Implications for condition-
dependent vulnerability of
network

Luscombe et al. Nature 431: 308
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cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

cell cycle
sporulation
diauxic shift
DNA damage
stress response

R

o

YMRO16C
YLR183C
YIL131C
SWI4
YDR451C
SWI6
STE12
MBP1
MCM1
YDR146C
YLR131C

UME6
IME1l
YNL216W
SIN3
YIR023W
YPLO38W
YNL103W
YMR021C
CBF1
YBL021C
YIL122W

HAP4
HAP2

YHR206W
YAPL
HSF1
YPLO89C
YCRO65W
CINS5
YDR310C

YDR259C
MSN2
YDR501W
MSN4
YGLOS6W
PDR1
YLR403W
YGLO71W
YIR018W

YKL043W
YLRO13W
YGL209W
YMLO27W
YFR034C
YELOOOSC
YBR049C
YGLO035C
YKL112W
YDR043C
YPRO65W

= Swi4, Mbp1

=Imel, Umeb

—— Msn2, Msn4

Luscombe et al. Nature 431: 308
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cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

[0}
17}
55
c%m%
2% EQ
T o

O ©® o S
235 % n
O,_><<u;
= O g zZ [
o o .2 =
O nwoTOTwW®

s TR

YMRO16C
YLR183C
YIL131C
SWI4
YDR451C
SWI6
STE12
MBP1
MCM1
YDR146C
YLR131C

UME6
IME1l
YNL216W
SIN3
YIR023W
YPLO38W
YNL103W
YMR021C
CBF1
YBL021C
YIL122W

HAP4
HAP2

YHR206W
YAPL
HSF1
YPLO89C
YCRO65W
CINS5
YDR310C

YDR259C
MSN2
YDR501W
MSN4
YGLOS6W
PDR1
YLR403W
YGLO71W
YIR018W

YKL043W
YLRO13W
YGL209W
YMLO27W
YFR034C
YELOOOSC
YBR049C
YGLO035C
YKL112W
YDR043C
YPRO65W

Unknown functions

Luscombe et al. Nature 431: 308
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Network Dynamics #2:
Environments

How do molecular networks change across environments?
What pathways are used more ?
Used as a biosensor ?

55



What is metagenomics?

Genomics Approach

Culture Microbes

Extract DNA

— P —

Metagenomics Approach

Collect Sample

Extract DNA

- -

Sequence Assemble and Annotate
ATCGTATA e F_
CGCGAAG — = T

ACGTCTGA T AN
AGTGCTGCT

Sequence Partially Assemble and Annotate

ATCGTGATAGATGATAGTAGA
ATGCTGCATGCATCTAGCACT
ACAGTAGCTAGCTACGTACTA
CAGCTGACTAGCTAGCTAGCT
ACGTAGCATGCTAGCTAGCAG
ACGTACGTAGCTAGCTAGCTAG  —— )
ACGTACGTACGTAGCTAGCATC
AGTCGACTGAGCCAGTGATGAT
ACGATGCATGAGCAGATGCTAC
AGATCGTAGCATGCTAGCATGCT
ACGTACGTAGCTAGCTAGCTAAG
AGCTAGCATGCTAGTAGCATGAG
ACGATGCTAGCTAGCTAGCTGATA
TCGATCAGCATGCTACGATGCAAG
ACGATCGATGCTAGCTAGCTAGCAT
AGCTAGCTAGTCAGCTAGCTAGATG

s
—
_—
_><_
—_—
e
~f—
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Global Ocean Survey Statistics (GO

USA
) Canada
gﬁuﬁoﬂ::nrebo a 7 Northern Gulf of Maine 7
lewport Harbor, 6 Bay of Fundy, Nova Scotia (Estuary) o
9Blocklsland,NY § Bedford Basin, Nova Scotia (Embayment . 2® ®3
:?gaelr:wﬁ:::g' MR 4 Outside Halifax,Nova Scotia 1 058
24 ry) il
12 Chesapeake BayMD (Estuars) "™ 22" G"MM‘"";..‘ 1
13 Off Nags Head, SC
. 13
North America B o
14 South ofCharkston SG !
14
USA 00
15 Off Key West, FL
16 Gulf of Mexico Atlantic
160 @15 Ocean
17 Vucatan ChannéliMexica 6 . 2 5 G B Of d ata

el18

18 Rosario Bank, Honduras
7.7M Reads

25 Dirty Rock, Cocos Island Panama

(Fringing Reef) 19 I 1 1
30 2330 mi from Cacos lsland® sl aamico0n 1 | I C P U h
L 3506 2 AR mitlion ours
317°% e 34 %
e L 250873 22

27’58 e 22 250 milfrom Panama City to p rocess

® 134 mi NE of Galapogos, Ecuador

037 South
Equatorial Pacific TAO, International America

bana (hypersaline)
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SCIENCE IN THE
PETABYTEERA

Rusch, et al., PLOS Biology 2007
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Pathway Sequences

(Community Function) \

Environmental
Features

Metabolic
B1 3800 | 1400 | 1000
gy |2200 | 100 [ 400

Sites

Environmental

Metadata Temp NaCl Depth

Sites

v

15°C

27.2] 10m

23°C

366 S5m

READS —— PROTEIN FAMILIES ——> PATHWAYS

o

CCGTGAGCACGATGCGCmmmrmeeme
o TGCTCATGCT—

CCGTGAGCACGA ATGCGETGETEATEC T
ATCGTGACGCGATG
C\TQCTCHTCCT I——
GCGATCGATCGATCGTAG

TGCTCCTAGCATGCT
GCGATCGATCGATCGTAGC
TGCTGCTAGCATGCT---
CCGTGAGCACGATGCGC -
GTATC( T

GCATGCTT

GCG T(g rrAT T’:

PATHWAYS
® N
smes = 2t1+3 P, =2+44+3
P,=5+246 P, =5+7+6

P.=f +f +f
&=Q+g+g

Expressing

data as
matrices

indexed by

site, env. var.,

and pathway

usage

[Rusch et. al., (2007) PLOS Biology;
Gianoulis et al., PNAS (in press, 2009]

©
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Metabolic

Sites

Pathways
B1
B2

\

Simple Relationships: Pairwise

Correlations

Environmental

3800 | 14004 1000
2200 | 100§| 400

[ Gianoulis et al., PNAS (in press, 2009) ]

Environmental Features

Chlorophyll

Temp

Ml |

05

- 00

I} I|||I|I|| |

-0.

Nn< O ST~ T

Cobalamin Biosynthesis

1

Itl

| Photosystem Il

Photosystem |

Carbon Fixation (Dark rx)

| Glutamine Degradation

|| IIW l

Predicted Temperature

Metadata Te NaCl §Depth
- B1 15°CH 27.2 JJ10m
ites >
B2 23°Cf 366 ] 5m
\J
L ]
- 4 ° .
L ]
o~ oo L ° L]
] * : o ®
(=% o . . o L] .
o o ® L .o L]
I 4 ) [ ] °
° [ ]
T . =68
T T . T T T
_2 -1 0 1 2

Actual Temperature

()09
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Canonical Correlation Analysis:
Simultaneous weighting

Score # of papers published Undergraduate Graduate School
Performance Index (UPI) | Performance Index (GPI)

[ Gianoulis et al., PNAS (in press, 2009)] -
Qo
o



Canonical Correlation Analysis:

Simultaneous weighting

Score # of papers published Undergraduate Graduate School
Performance Index (UPI) | Performance Index (GPI)
GRE
GRE GPA
| — .
L Environmental Metabolic
Features Pathways .
Temp  ©fC Photosynthesis  €tc
( Chlorophyll Lipid Metabolism
s s

[ Gianoulis et al., PNAS (in press, 2009)] -
~
o



Environmental-Metabolic Space

max
corr

NaCl

Depth

BS vl
84' \?3

l\/

Linearcombination of

environmental| features.

/

Linear combination of

\pathways

l

Normalized Weights (Dim 11)

10

1.0

05

0.0

iy

The goal of this technique is to interpret cross-variance matrices
We do this by defining a change of basis.

Given X = {xl,xz,....,xn} and Y={y1,,y2,...,ym}

EX,Y
2v.x

C

2x
2y

max Corr(U,V) =

a,b

CCA Footpdnt

/ NaCl A

P1*

ZIA

™~

N
P3e \\

Depth,

05

P4.

-
P5e

\ Tempy,

AN

—t—

v

llllllli"&l

|
|
|
J

f
/
f
:"
/

sevusunnns

0 05 00 05 10

Normalized Weights (Dim 1)

ay,,b

\/a’zua\/b’zzzb

[ Gianoulis et al., PNAS (in press, 2009) ]
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DPM: Discriminative Partition Matching

Environment

Site-Set 1

Cluster (Partition)

Taurine biosynthesis
Heme biosynthesis
Asparagine degradation
Nitrogen fixation
Acylglycerol degradation
Asparagine biosynthesis
Cysteine Metabolism

Metabolism

DPM FOOTPRINT
/ JAN
'P1|P2 P3|P4|P5
Am_
N

==

=

EEE 0 0

[]
]
[]

==
===
==

Functional class pval

()09

InfoStorage & .07
Processing

Cellular Process .08
Metabolism 4x10-14

[ Gianoulis et al., PNAS (in press, 2009)] -
™
o



Strength of Pathway co-variation
with environment

CCA structural correlation

Environmentally Environmentally
invariant variant

CCA structural correlation

[ Gianoulis et al., PNAS (in press, 2009) ]
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Conclusion #1: energy
conversion strategy,
temp and depth

KEGG Module
® -
o
ATPase
Photosynthesis Icomplex
@
—@

o o e aQ o] o [ o
Oxidative , o o | o o o o | o | o
Phosphorylation | Y | |

o o’ e [“-eo | e e

o o o © a o
ATPase
complex

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #2: Outer Membrane
components vary the environment

[ Gianoulis et al., PNAS (in press, 2009) ] o
©



Conclusion #3: Covariation of AA
biosynthesis and Import

Why is their fluctuation

in amino acid metabolism?

Is there a feature(s) that

underlies those that are
environmentally-variant

as opposed to those which are not?

His degradation Trp QM

"9

[ Gianoulis et al., PNAS (in press, 2009) ] \l;



Conclusion #4: Cofactor (Metal)
Optimization

IS DEPENDENT-ON

Methionine synthesis
Cobalamin biosynthesis

Methionine salvage, synthesis,
and uptake, transport

Cobalt transporters

O

HOJJ\/\/S\CH

Cooo73

NH,

3

Methionine
RELIES ON

Methionine Salvage
Spermidine/Putrescine transporters

Arg/His/Ornithine transporters

IS NEEDED FOR

Methionine degradation
S-adenosyl Methionine Biosynthesis
(synthesize SAM one of the most

important methyl donors)

Polyamine biosynthesis

[ Gianoulis et al., PNAS (in press, 2009) ]



Biosensors:
Beyond Canaries in a Coal Mine

[ Gianoulis et al., PNAS (in press, 2009)] -

o))
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Networks & Variation

Which parts of the network vary most in sequence?
Which are under selection, either positive or negative?

70-
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METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE
e N
Hapmap/Perlegen Database of Genomic Variants
International i
HapMap
Proj ct
Map to ENSEMBL genes
SNPs CNVs + SDs
Ensembl Genes
ENSGO00XXXX:
V00 Result
DN/DS XXXX
Recombination rate
Int ¢ * Dataset of network
n erac% ome Mab t teins in th position / parameters
viap 1o proteins mk © (e.g. degree centrality
interaction networ or betweenness
> centrality) in
relationship to SNPs,
CNV’s, recombination
from HPRD and selection tests
Y2H screens
\_ .

*From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)

Source: PMK



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

Single-
basepair

Structural
variation

Source: PMK

Intra-species variation

Positive
Selection

)
S
O >
e

@ O

Single-Nucleotide Polymorphisms

I— Positive
- ee— Selection
o 0 j—————— —_—
o 000 ——————

] ]

Copy Number Variants

Fixed mutations
(differences to other species)

Fixed Differences

Segmental Duplications



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK
PERIPHERY

Positive selection in the human interactome

-
® High likelihood of
positive selection
Lower likelihood of
© positive selection
[ J
o Not under positive
selection
®
0O No data about
positive selection
o
®
[ J
-

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE

SELECTION

Degree vs. Positive Selection

5,

]

45P¢ Spearman Rank P-value: 1.2e-06

41e

w

D

3

=
o

—_

Positive Selection Test Likelihood Ratio
N
U‘l

o
($)]

1 & & & & 1

o

05 1 15 2
Betweenness Centrality

o

2.5

x 10°

Network periphery

Network center

[ 1 Hubs

Reasoning

Vs

.

* Peripheral genes are likely to under
positive selection, whereas hubs
aren'’t

* This is likely due to the following
reasons:

— Hubs have stronger structural

constraints, the network periphery
doesn'’t

— Most recently evolved functions
(e.g. “environmental interaction
genes” such as sensory
perception genes etc.) would
probably lie in the network
periphery

* Effect is independent of any bias
due to gene expression differences

*With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection
(McDonald Kreitmann and LDD) corroborate this result.
Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)




CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

Centrality vs. SD occurrence Reasoning

Vs

* This result also confirms our initial
hypothesis — peripheral nodes tend
8- - to lie in regions rich in SDs.

~

-Spearman Rank P-value: 3.5e-04 .

* Since segmental duplications are a
different mechanism of ongoing
evolution, the less constrained
peripheral proteins are enriched in
them.

(o2}

AN
19J

Number of Overlapping SDs
w (6]

* Note that despite the small size of
2me 9 our dataset for known SD’s we get
significant correlations. It is to be

‘| DR OO @ & 0060000 ‘o . .
0 05 1 15 2 25 3 35 4 expected that the correlations will
Betweenness Centrality x 10° get clearer as more data emerges*
Network periphery Network center

.

*Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome
Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)



Why do we observer this? Perhaps central hub proteins are involved
in more interactions & have more surface buried.

0.49
BURIED SITES ARE 0.35
CONSERVED AND dN/dS :
MUCH LESS LIKELY Ratio
TO HARBOR NON-
SYNONYMOUS 001
MUTATIONS Exposed Buried
sites sites
2.66
Average 226
Relative
Surface
Exposure
p<<0.01
Site with Sites with
Synonymous  Non-synonymous
Mutations only Mutations

Source: Kim et al. PNAS (2007)



Another explanation: THE NETWORK PERIPHERY CORRESPONDS TO THE
CELLULAR PERIPHERY

Ve N
Betweenness Degree
Centrality Centrality
(x 10%)
Chromosome 55 10
Nucleus 5.0 8.6
Cytoplasm 5.2 8.1
© Extracellular
@ Plasma membrane @ Ribosome Membrane 4.0 6.5
O Cytoplasm © Lysosome
O Mitochondria @ Peroxisome
@ Nucleus @ Golgi apparatus
@ centrosome @ Endoplasmic reticulum EXtr.a cellular 3.8 5.9
O Endosome @ Other organelles/unknown egion
\_ J

Source: Gandhi et al. (Nature Genetics 2006), Kim et al. PNAS (2007)



IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR
THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE

NETWORK PERIPHERY? LUSTRATIVE
4 )
Relaxed Constraint Adaptive Evolution
Inter-Species * Increases inter-species * Increases inter-species
Variation (Fixed variation — more variable variation — more variable
differences) loci are under less negative loci are under less negative
selection selection
* Can be seen in higher Ka/ * Can be seen in higher Ka/
Ks ratio or SD occurrence Ks ratio or SD occurrence
Intra-Species * Increases intra-species * Should not have effects on
Variation variation — for the very same intra-species variation
(Polymorphisms) reason
* Can be seen in both SNPs
or CNVs
. J

Source: Kim et al. PNAS (2007)



SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE
PERIPHERY IS DUE TO RELAXED CONSTRAINT

Inter vs. Intra-Species Variation in Networks Reasoning
(
4.37 * There is a difference in variability
(in terms of SNPs) between the
Inter-Species network periphery and the center
(Fixed 2.71
differences)
petwesaness * However, this difference is much
J . .
ix 10%) smaller than the difference in
selection
p<<0.Ct
Genes with Genas with
dN/ds>1 dN/gsS«<=1

* This most likely means, that part of
the effect we're seeing is due to

4.35 . .
ntra-Sooci 408 relaxed constraint (and higher
ntra-Species variabilit
(SNPs) y)

[ Variability ]
Betweenness
Centrality * But, not the entire effect*
(x 10%)
p<0.05
Genes with Genes with
pPN/pS>1 pPN/pS<=1

*But it’s hard to quantify
Source: Kim et al. (2007) PNAS



Similar Results for Large-scale Genomic Changes (CNVs and SDs)

Inter vs. Intra-Species Variation in Networks

4.18
Inter-
Species
2.61

(SDs)

Betweenness

Centrality

(x 104

p<<0.01
Genes intersecting All others
SDs
4.20

Intra-Species 325
(CNVs) '
[ Variability ]

Betweenness

Centrality

(x 10%)

p<<0.01
Genes intersecting All others

CNVs

Reasoning

Ve

Source: Kim et al. (2007) PNAS

* There a small difference in
variability (in terms of CNVs)
between the network periphery and
the center

* But, there is a (as shown before)
marked difference in fixed (and
hence, presumably, selected) SDs
at the network periphery and center




Networks & Variation 2

Which parts of the network vary most in sequence?
More generally which features are
most correlated with evolutionary rate

81 - Lectures.GersteinLab.org ¢



Protein evolutionary rate

"\
| e |

7™

,\l, \\’\

i L o

‘oo ,:' elimination / fixation
\\/

Evolutionary rate at the whole protein level

Why do some proteins evolve slowly, while
others evolve quickly?

[Slide from Y Xia]



[Xia et al. ('09). Plos CB]

Many Gene Features

Potentially Correlated with Evolutionary Rate

Meta-features

Features

Amino Acid Composition

Structure (Physicochemical Properties)

Function

Abundance

Phenotype

Amino Acid Content (20 total attributes)
Predicted helix content

Predicted sheet content

Predicted coil content

Predicted native disorder

Predicted transmembrane helix content
Charge (pl)

Hydrophobicity (Kyte-Doolittle)
Aromaticity

Size

Biological process (GO slim)

Molecular function (GO slim)

Cellular compartment (GO slim)

()09

Absolute mRNA expression
Protein expression

Codon Adaptation Index (CAI)
Codon bias

Essentiality

Marginal essentiality

Network

Number of interactors

Number of transcriptional regulators

Genome

Degree of gene duplication

GC content

83




[Xia et al. ('09). Plos CB]

Assess Relationship of Many Different
Features to Evolutionary Rate in Yeast

established B ranks of normalized average binned
A orthologie s evolutionary rate c ranks D rank E rank
Low
f— L
== Rl
. -— Medium
—a— — S - —
yeast, yeast, yeast, yeast;
High

VS, VvS. VS, vs. “all” “all”
yeast, yeasl; yeast, yeast; yeasts yeasts

84.



Simple Relationships between Individual
Features & Evolutionary Rate

2 2« 2«
1 ] €
g g g Rank Correlation with
5 5 5 Feature Description Evolutionary Rate
T T T 1+
lﬁ o S Codon bias —0.578
g § § Codon adaptation index -0.557
Protein expression —0.486
0 - Absolute mRNA expression —0.467
Low Med High Low Med High Low Med High | Gly content ~0.401
# of Protein Interactors # of Transcriptional Regulators Native Disorder Ala content ~0.390
Ser content 0.366
‘ 3T 27 Asn content 0317
§ E § Val content —0.293
E E 27t E Native disorder 0.251
o _U .0
1T = 1T GC content ~0.242
w w w —
T ° 1+ ] Degree of gene duplication —0.206
Ig I 12 u°. Sheet content —0.191
0 - 0 - 0 - Number of interactors ~0.160
None Low Med High Low Med High Low Med High | |Essentiality —0.147
Gene Duplications Protein Expression Serine Content Marginal essentiality —0.146 8
# of transcriptional regulators —0.142 é
3T 27 o7 Hydrophobicity —0.141 o
E § .é Leu content 0.105 %
E2 E E2y GIn content 0.081 -l
[ %] [ c
T c 1+ c —
S & & doi:10.1371/journal.pcbi.1000413.t002 9
3171 o 317 o
2 - 2 k-
0 - 0 - 0 - g)l;
PN S &S No Yes ¢ ¢ »® =
G‘\ (\&‘9 ,08‘0 JS\QQP oc}\g e,dab (@Qo é&o \ @ QCP \o o" 690‘ 2
\)‘\*3“‘9& o r o & & & Essentiality § oo@& P Q“b & & &b ‘) -
A 8 <o Q
& & <
& & & s & . -
¢ & & e“° [Xia et al. ("09). Plos CB] :
GO Slim Biological Process GO Slim Molecular Function g



[Xia et al. ('09). Plos CB]

Correlations among top correlates of

evolutionary rate

Glycine Alanine

content
Content Serine
Absolute content
mRNA
expression

Asparagine
content

Protein
expression

Valine
content

Codon

Adaptation

Index
Predicted
native
disorder

Codon

bias

GC content

Leucine
content

Degree
of gene
duplication

Number of
transcriptional

regulators Number of

Marginal interactors
essentiality Essentiality
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Correct Classification Rate (%)

Correct Classification Rate (%)

Information

contribution of

=== protein features
&

65 - Structure —
60 -
- “meta-features’
o@‘}O@ §!>‘°@ Qo“\é\\ & -@o&é cP“@& 00“\0& oo“\é\\ «e"éoo 00669 i n t h e ta S k Of
¥ & o Y ) u ©
IR F & & & g <@
Q® 69.

_predicting
_ Predictions based o the conserved componentof evolulonaryrte (228) _ _ _ _ .. slowly evolving
_proteins

()09

[Xia et al. ('09). Plos CB]
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Outline: Molecular Networks

Why Networks?

Predicting Networks eas)
() Propagating known information

Dynamics & Variation of
Networks

¢ Across cellular states )

() Across environments
(in prokaryotes)

Protein Networks &
Varlathn (yeast & humans)

88 - Lectures.GersteinLab.org ¢



Conclusions on Networks:
Predictions

* Predicting Networks

() Extrapolating from the Training
Set

{ Principled ways of using known

information in the fullest possible
fashion

* Prediction Propagation
* Multi-level learning

\

>/

()09
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Conclusions: Network Dynamics
across Cellular States

* Merge expression data with
Networks

 Active network markedly
different in different
conditions

* |dentify transient hubs
associated with particular
conditions

» Use these to annotate genes
of unknown function

90



Conclusions: Networks Dynamics
across Environments

« Developed and adapted techniques to
connect quantitative features of
environment to metabolism.

« Applied to available aquatic datasets, we
identified footprints that were predictive
of their environment (potentially could be

< used as biosensor).

« Strong correlation exists between a
community’s energy conversion
strategies and its environmental
parameters (e.g. temperature and
chlorophyll).

« Suggest that limiting amounts of cofactor
can (partially) explain increased import
of amino acids in nutrient-limited
conditions.




Conclusions: Connecting
Networks & Variation

« We find ongoing evolution (positive
selection) at the network periphery.
¢ This trend is present on two levels:

* On a sequence level, it can be seen
as positive selection of peripheral
nodes

* On a structural level, it can be seen as
the pattern of SDs that display
significantly higher allele frequencies
in non-central genes

( 2 possible mechanisms for this : adaptive
evolution at cellular periphery & relaxation
of structural constraints at the network
periphery

« We show that the latter can only
explain part of the increased variability

92 Lectures.GersteinLab.org (c) 2009



e

Conclusions: Connecting
Networks & Variation 2

- ISR T

= » Evolutionary rate is related to
network positioning

 However, only a weak
relationship, with more
association with abundance
and composition

93 Lectures.GersteinLab.org (c) 2009



tYNA

- an automated web tool (vers. 2
"TopNet-like
Yale Network Analyzer")

/] tYNA - Control Panel osoft Internet Explorer =8| x| <
Ble Edt View Favortes Tools Help ‘ o
O Back ~ () - d ﬂ ;] /' ) search | Favorites 4% ‘ LS < E Py
address [&] Order=idicategoryOrder=id DVANCED_VIEWEIistTyp sethetw x| £ Go | ks | & - -
= [camnz)
= ==
tYNA =
<>
Getting started AP| WSDL Download tYNA | Il guide Plugins for Cytoscape Contact Known problems
You are logged in as kevin. Logout View: Simple Advanced
List | Owned ~| |Biological ¥| networks with I(Attrihute name)j =|(A|trihute value)j List =
= =
Workspace manager Networks in database (upload download ) = o 3 <
Load an existing network © Creation >
1D Mame Creator date <
Load 14. Uetz 2000 yeast two ... ¥ 14 Uetz 2000 yeast two hybrid kevin  21-Feb0B  Delete @
15 Ito 2001 yeast two hybrid kevin  21-Feb-06  Delete
Into workspace 0 ¥ >
16 Ho 2002 pull down kevin  21-Feb-06  Delete
Categorized by Nil i 17 Gavin 2002 pull down kevin  21-Feb-06  Delete Display options:
= Default col
Load 18 Jansen 2003 PIT kevin  21-Feb0B  Delete elaull E21018
Node: [ blue | Edge: | | Text: | =l
19 MIPS yeast PPI kevin  21-Feb-06  Delete Special coloring: @
Current working networks in your workspaces: 21 BIND yeast data Kkevin  21-Feb06  Delete © None
0 i . geq, 1, value, neighbors=false,
" in‘:el;sectian( o5 9 22 DIP yeast data kevin  21-Feb-06  Delete @ Color gradient: | Degree | of | Original network =] from [areen = to]red ~|
"Uetz 2000 yeast two hybrid”, 23 Kim 2006 structural interaction  kevin ~ 21-Feb-08  Delete c =
"to 2001 yeast two hybrid") ! Color class:  Class name: [j
24 Han 2004 FY| data kevin  21-Feb-06  Delete Redraw 3
Waorkspace 1 (empty) s
25 Luscombe 2004 regulatory kevin  21-Feb-06  Delete | e — o
WokspaceZ  (empty) ‘ T
Waorkspace 3: (empty) e EE . Wode |[Edgo g‘,"“eﬂe‘:' Degrees @ C|||stering§oetfcienls ‘ )
ategory (oot | Count |COMPONENts
i e D Name Creator Creation date A4 Avg S D Mm Max. |Avg. |S.0. |Min [Max. Avg. |S.D. |Min. |Max Min.
e-network analysis
- e | ‘n"g‘v“v':’k ‘ 275‘ 137‘ 109 1.30 |0.74 7004|019 |0.00 | 1.00 251 [157 200.00
& 4 Internet

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);
Similar tools include Cytoscape.org, ldekar, Sander et al]
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More Information on this Talk

TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION:

Summit on Systems Biology 2009, The Microbial World and Beyond,
Richmond, VA, 2009.05.19, 13:00-14:00; [I:3RDSUMMIT] (Long networks
talk, adding in for the first time: . Fits easily into 50’
w. 10’ questions. PPT works on mac & PC and has many photos.)

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily

cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the
site. For instance,

the topic can be looked up at
http://papers.gersteinlab.org/papers/ )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see

http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily
queried from flickr, vizz http: //www. £flickr.com/photos/mbgmbg/tags/kwpotppt



