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The problem: Grappling with  
Function on a Genome Scale? 

• 250 of ~530  
originally characterized on chr. 22  
[Dunham et al. Nature (1999)] 

• >25K Proteins in Entire Human Genome 
 (with alt. splicing) 

.……  ~530 
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Traditional single 
molecule way to integrate 

evidence & describe 
function 

Descriptive Name: 
Elongation Factor 2 

Summary sentence  
describing function: 

This protein promotes the 
GTP-dependent 

translocation of the 
nascent protein chain from 
the A-site to the P-site of 

the ribosome.  

EF2_YEAST 

Lots of references  
to papers 
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Some obvious issues in scaling single 
molecule definition to a genomic scale 

•  Fundamental complexities 
◊  Often >2 proteins/function  

◊  Multi-functionality:  
2 functions/protein  

◊  Role Conflation:  
molecular, cellular, phenotypic 
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Some obvious issues in scaling single 
molecule definition to a genomic scale 

•  Fundamental complexities 
◊  Often >2 proteins/function  

◊  Multi-functionality:  
2 functions/protein  

◊  Role Conflation:  
molecular, cellular, phenotypic 

•  Fun terms… but do they scale?.... 
◊  Starry night (P Adler, ’94) 

[Seringhaus et al. GenomeBiology (2008)] 
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Hierarchies & DAGs of  
controlled-vocab terms 
but still have issues...  

[Seringhaus & Gerstein, Am. Sci. '08] 

GO (Ashburner et al.) MIPS (Mewes et al.) 
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Towards Developing Standardized 
Descriptions of Function 

•  Subjecting each gene to standardized expt. and 
cataloging effect 
◊  KOs of each gene in a variety of std. conditions => phenotypes  
◊  Std. binding expts for each gene (e.g. prot. chip) 

•  Function as a vector  

Interaction Vectors [Lan et al, IEEE 90:1848] 



Do not reproduce without permission 

Networks (Old & New) 

[Seringhaus & Gerstein, Am. Sci. '08] 

Classical KEGG pathway Same Genes in High-throughput Network 
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Networks occupy a midway point in 
terms of level of understanding 

1D: Complete  
Genetic Partslist 

~2D: Bio-molecular 
Network 

 Wiring Diagram 

3D: Detailed 
structural  

understanding of  
cellular machinery 

[Jeong et al. Nature, 41:411] [Fleischmann et al., Science, 269 :496] 



Do not reproduce without permission 

Networks as a universal language 

Disease 
Spread 

[Krebs] 

Protein 
Interactions 

[Barabasi] Social Network 

Food Web 

Neural Network 
[Cajal] 

Electronic 
Circuit 

Internet 
[Burch & Cheswick] 
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Using the 
position in 

networks to 
describe 
function 

[NY Times, 2-Oct-05, 9-Dec-08] 

Guilt by association 

Finding the 
causal regulator 
(the "Blame 
Game") 
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Combining networks forms an ideal way 
of integrating diverse information 

Metabolic 
pathway 

Transcriptional 
regulatory 
network 

Physical protein-
protein Interaction 

Co-expression 
Relationship 

Part of the  
TCA cycle 

Genetic interaction 
(synthetic lethal) 
Signaling pathways 
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Outline: Molecular Networks 

•  Why Networks? 

•  Predicting Networks (yeast) 
◊  Propagating known information 

•  Dynamics & Variation of
 Networks 
◊  Across cellular states (yeast) 
◊  Across environments  
(in prokaryotes) 

•  Protein Networks &  
Variation (yeast & humans) 
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Example: yeast PPI
 network 

Actual size: 
◊  ~6,000 nodes 
→  Computational cost: ~18M pairs 

◊  Estimated ~15,000 edges 
 →  Sparseness: 0.08% of all pairs 
(Yu et al., 2008) 

Known interactions: 
◊  Small-scale experiments: accurate but few 
→  Overfitting: ~5,000 in BioGRID, involving 
~2,300 proteins 

◊  Large-scale experiments: abundant but 
noisy 
 →  Noise: false +ve/-ve for yeast 
two-hybrid data up to 

 45% and 90% (Huang et al., 2007)
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Types of Networks 

Interaction networks 

[Horak, et al, Genes & Development, 16:3017-3033] 

[DeRisi, Iyer, and Brown, Science, 278:680-686] 

[Jeong et al, Nature, 41:411] 

Regulatory networks 

Metabolic networks 

Nodes: proteins or genes 
Edges: interactions 
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Predicting Networks 
How do we construct large molecular networks?  

From extrapolating correlations between functional genomics data with fairly 
small sets of known interactions, making best use of the known training data. 
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Network prediction: known information 

1 2 

4 3 

Known interactions 

Known non-interactions 

Unknown 
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Network prediction: features 

•  Example 1: gene expression 

x1 = (0.2, 2.4, 1.5, …) 
x2 = (0.8, 2.2, 1.5, …) 
x3 = (4.3, 0.1, 7.5, …) 
… 
sim(x1, x2) = 0.62 
sim(x1, x3) = -0.58 
… 

Gasch et al., 2000


1 2 

4 3 

Similarity scale: 

1 -1 
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Network prediction: features 

•  Example 2: sub-cellular localization 

x1 = (1, 1, 0, 0, …) 
x2 = (1, 1, 1, 0, …) 
x3 = (1, 0, 1, 0, …) 
… 
sim(x1, x2) = 0.81 
sim(x1, x3) = 0.12 
… 

1 2 

4 3 

Similarity scale: 

1 -1 

http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif 
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Network prediction: data integration 

1 2 

4 3 

1 2 

4 3 

1 2 

4 3 

1 2 

4 3 
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Learning methods 
An endless list: 
•  Docking (e.g. Schoichet and Kuntz 1991) 

•  Evolutionary (e.g. Ramani and Marcotte, 2003) 
•  Topological (e.g. Yu et al., 2006) 

•  Bayesian (e.g. Jansen et al., 2003) 

•  Kernel methods 

◊  Global modeling: 

•  em (Tsuda et al., 2003) 

•  kCCA (Yamanishi et al., 2004) 

•  kML (Vert and Yamanishi, 2005) 

•  Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005) 
◊  Local modeling: 

•  Local modeling (Bleakley et al., 2007) 

Let’s compare in a public challenge!  
(DREAM: Dialogue for Reverse Engineering Assessment and Methods) 
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DREAM3: in silico regulatory network reconstruction 

Actual network Expression data 

Deletion strains  

Time series after 
initial perturbation  

Modeling Predictions 

   Prob(signal|point) 

= 2Φ((point – ref) / s) – 1


Noise models 

Expression rate 
models 

Accuracy 
(AUC) 

E. Coli 1 E. Coli 2 Yeast 1 Yeast 2 Yeast 3 

Size-10 0.928
 0.912
 0.949
 0.747
 0.714


Size-50 0.930
 0.924
 0.917
 0.792
 0.805


Size-100 0.948
 0.960
 0.915
 0.856
 0.783


[Y
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t 
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., 

D
R

E
A

M
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Our work: efficiently propagating
 known information 

Training set expansion 
•  Motivation: lack of training examples 

•  Expand training sets horizontally 

Multi-level learning 
•  Motivation: hierarchical nature of 

interaction 

•  Expand training sets vertically 

DREAM3 in silico regulatory network 
reconstruction challenge 

Local model 1 Local model 2 

PPI predictions 

DDI predictions 

RRI predictions 
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Global vs. local modeling


Global modeling: build one model for the whole network 

1 2 

4 3 

?


Example - Pairwise kernel: 
consider object pairs instead 
of individual objects 

Problem: O(n2) instances, 
O(n4) kernel elements 

1 

3 
2 

3 2 

4 

1 

4 

1 

2 

3 

4 

1 

1 

4 

4 2 

2 

3 

3 
1 

4 

1 

2 

3 

4 

4 

4 2 

2 

3 

3 
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Global vs. local modeling


Local modeling: build one model for each node 

1 2 

4 3 

?


1 

2 

4 

3 

2 

4 

Model for node 3: 

Problem: insufficient and unevenly distributed training
 data (what if node 3 has no known interactions at all?) 



Do not reproduce without permission 

Prediction propagation 

•  Goal: keep the flexibility of 
local modeling, but tackle the 
data sparsity problem 

•  Motivation: some objects 
have more examples than 
others 

•  Our approach: 
◊  Learn models for objects with 

more examples first 

◊  Propagate the most confident 
predictions as auxiliary 
examples of other objects


1 2 

4 3 

1 

2 

4 

3 

1 

2 

4 

3 

1 

2 

4 

3 

1 

2 

4 

3 

[Yip and Gerstein, Bioinformatics ('09)] 
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Prediction accuracy (AUC) 

Observations: 
•  Highest accuracy by training set expansion 
•  Over fitting of local modeling without training set 

expansion 

•  Prediction propagation theoretically related to co
-training (Blum and Mitchell, 1998) 
◊  Semi-supervised (Similarity with PSI-BLAST) 

[Yip and Gerstein, Bioinformatics ('09)] 
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From horizontal to vertical 

Training set expansion 
•  Motivation: lack of training examples 

•  Expand training sets horizontally 

Multi-level learning 
•  Motivation: hierarchical nature of interaction 

•  Expand training sets vertically


Local model 1 Local model 2 

PPI predictions 

DDI predictions 

RRI predictions 
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Protein interaction 

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)


Protein-level features for interaction prediction: functional genomic information 

[Yip and Gerstein, in revision] 



Do not reproduce without permission 

Domain interaction 

Pfam domains: PF00107 (inner) and PF08240 (outer)


Domain-level features for interaction prediction: evolutionary information 

[Yip and Gerstein, in revision] 
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Residue interaction 

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285


Residue-level features for interaction prediction: physical-chemical information 

[Yip and Gerstein, in revision] 
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Combining the three problems 

Protein

interactions


Domain

interactions


Residue

interactions


i. Independent levels
 iii. Bidirectional flow
ii. Unidirectional flow


[Yip and Gerstein, in revision] 
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Empirical results (AUCs) 

•  Highest accuracy by bidirectional flow 

•  Additive effect: 2 vs. 3 levels 

Ind. levels Unidirectional flow Bidirectional flow 

Level PD PR DR PD PR DR PDR 

Proteins 71.68
 72.23
 72.50
 72.82


Domains 53.18
 61.51
 71.71
 68.94
 71.20


Residues 57.36
 54.89
 53.81
 72.26
 63.16
 77.86


[Yip and Gerstein, in revision] 
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Network Dynamics #1: 
Cellular States 

How do networks change across different cellular states?  
How can this be used to assign function to a protein? 
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Target Genes 

Transcription Factors •  Analyzed network as a static 
entity 

•  But network is dynamic 
◊  Different sections of the network 

are active under different cellular 
conditions 

•  Integrate gene expression data 

Dynamic Yeast TF network 

Luscombe et al. Nature 431: 308 
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Gene expression data for five cellular 
conditions in yeast 

Cellular condition 

Cell cycle 

Sporulation 

Diauxic shift 

DNA damage 

Stress response 

Multi-stage  

Binary 

[Brown, Botstein, Davis….] 
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Backtracking to find active sub-network 

•  Define differentially expressed genes 

•  Identify TFs that regulate these genes 

•  Identify further TFs that regulate these TFs 

Active regulatory sub-network 
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Network usage under different conditions

static 

Luscombe et al. Nature 431: 308 
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Network usage under different conditions

cell cycle 
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Network usage under different conditions

sporulation 
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Network usage under different conditions

diauxic shift 
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Network usage under different conditions

DNA damage 
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Network usage under different conditions

stress response 
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Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress 

SANDY: 
1. Standard graph-theoretic statistics: 

- Global topological measures 
- Local network motifs 

2. Newly derived follow-on statistics: 
- Hub usage 

- Interaction rewiring  

3. Statistical validation of results 

Luscombe et al. Nature 431: 308 
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Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress 

SANDY: 
1. Standard graph-theoretic statistics: 

- Global topological measures 
- Local network motifs 

2. Newly derived follow-on statistics: 
- Hub usage 

- Interaction rewiring  

3. Statistical validation of results 
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Global topological measures 

Indicate the gross topological structure of the network 

Degree (K ) Path length (L ) Clustering coefficient (C ) 

[Barabasi] 

Interaction and expression networks are undirected 
5 2 1/6 
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Global 
topological 

measures for 
directed 
networks 

In-degree 

TFs 

Targets 

Regulatory and metabolic networks are directed 

Out-degree 
5 3 
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Scale-free networks 

Hubs dictate the structure of the network 

log(Degree) 

lo
g(

F
re

qu
en

cy
) 

Power-law distribution 

[Barabasi] 
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Outdegree 

Indegree 

Pathlength 

Clustering 
coefficient 

Binary 
Quick, large-scale  
turnover of genes 

Multi-stage 
Controlled, ticking  

over of genes  
at different stages 

Analysis of 
condition-
specific 

subnetworks 
in terms of 

global 
topological 
statistics 

Luscombe et al. Nature 431: 308 
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Summary 

multi-stage conditions binary conditions 

Cell cycle Sporulation Diauxic shift DNA damage Stress 

less pronounced Hubs more pronounced 
longer Path Lengths shorter 
more TF inter-regulation less 

complex loops (FFLs) Motifs simpler (SIMs) 
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Regulatory hubs 

Luscombe et al. Nature 431: 308 

Transient Hubs 

•  Questions: 
◊  Do hubs stay the same or do they change over between conditions? 
◊  Do different TFs become important? 

•  Our Expectations 
◊  Literature:  

•  Hubs are permanent features of the network regardless of condition 

◊  Random networks (sampled from complete regulatory network) 
•  Random networks converge on same TFs 
•  76-97% overlap in TFs classified as hubs (ie hubs are permanent) 
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transitient hubs 

permanent hubs 

•  Some permanent hubs 
◊  house-keeping functions 

•  Most are transient hubs 
◊  Different TFs become key 

regulators in the network 

•  Implications for condition-
dependent vulnerability of 
network 

transient hubs 

permanent hubs 

cell cycle 

sporulation 

diauxic shift 

DNA damage 

stress response 

all conditions 

Luscombe et al. Nature 431: 308 
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transitient hubs 

permanent hubs 

Swi4, Mbp1 

Ime1, Ume6 

Msn2, Msn4 

cell cycle 

sporulation 

diauxic shift 

DNA damage 

stress response 

all conditions 

Luscombe et al. Nature 431: 308 
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transitient hubs 

permanent hubs 

Unknown functions 

cell cycle 

sporulation 

diauxic shift 

DNA damage 

stress response 

all conditions 

Luscombe et al. Nature 431: 308 
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Network Dynamics #2: 
Environments 

How do molecular networks change across environments?  
What pathways are used more ?  

Used as a biosensor ? 
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Global Ocean Survey Statistics (GOS) 

6.25 GB of data 
7.7M Reads 
 1 million CPU hours  
to process 

Rusch, et al., PLOS Biology 2007 
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Expressing 
data as 

matrices 
indexed by 

site, env. var., 
and pathway 

usage  

Pathway Sequences 
(Community Function) Environmental  

Features 

[Rusch et. al., (2007) PLOS Biology;  
Gianoulis et al., PNAS (in press, 2009] 
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+ b’ + c’ GPI = a’ 

+ b + c UPI = a 

[ Gianoulis et al., PNAS (in press, 2009) ] 
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+ b’ + c’ GPI = a’ 

+ b + c UPI = a 
Metabolic  
Pathways 

Environmental 
Features 

Temp 

Chlorophyll 

etc Photosynthesis 

Lipid Metabolism 

etc 

[ Gianoulis et al., PNAS (in press, 2009) ] 
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The goal of this technique is to interpret cross-variance matrices 
We do this by defining a change of basis. 

a,b 

[ Gianoulis et al., PNAS (in press, 2009) ] 



Do not reproduce without permission 

Cluster (Partition) Test 

Environment 

Metabolism 

Taurine biosynthesis 
Heme biosynthesis 

Asparagine degradation 
Nitrogen fixation 

Acylglycerol degradation 
Asparagine biosynthesis 

Cysteine Metabolism 

InfoStorage & 
Processing 

.07 

Cellular Process .08 

Metabolism 4x10-14 

pval Functional class 

[ Gianoulis et al., PNAS (in press, 2009) ] 
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Environmentally  
invariant 

Environmentally  
variant 

Strength of Pathway co-variation 
with environment  

[ Gianoulis et al., PNAS (in press, 2009) ] 
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Conclusion #1: energy 
conversion strategy, 

temp and depth  

[ Gianoulis et al., PNAS (in press, 2009) ] 
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[ Gianoulis et al., PNAS (in press, 2009) ] 
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Why is their fluctuation 
in amino acid metabolism? 
Is there a feature(s) that  
underlies those that are  
environmentally-variant  
as opposed to those which are not? 

[ Gianoulis et al., PNAS (in press, 2009) ] 



Methionine degradation 

Polyamine biosynthesis 

Spermidine/Putrescine transporters 

Methionine synthesis 

Cobalamin biosynthesis 

Cobalt transporters 

Methionine Salvage 

IS DEPENDENT-ON 

Methionine 

IS NEEDED FOR 

S-adenosyl Methionine Biosynthesis 
(synthesize SAM one of the most 

important methyl donors) 
RELIES ON 

Arg/His/Ornithine transporters 

Methionine salvage, synthesis,  
and uptake, transport 

[ Gianoulis et al., PNAS (in press, 2009) ] 
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[ Gianoulis et al., PNAS (in press, 2009) ] 
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Networks & Variation 
Which parts of the network vary most in sequence?  

Which are under selection, either positive or negative? 



METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND 
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME 

 * From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005) 

Source: PMK 

ILLUSTRATIVE 

Hapmap/Perlegen 

ENSG000XXXX: 
rsSNP00XXX 
CNV_XXX 
DN/DS XXXX 
Recombination rate  

Map to ENSEMBL genes 

Interactome 

SNPs 

~30000 interactions 
from HPRD and 
Y2H screens 

Database of Genomic Variants 

Map to proteins in the  
interaction network 

Ensembl Genes 

•  Dataset of network 
position / parameters 
(e.g. degree centrality 
or betweenness 
centrality) in 
relationship to SNPs, 
CNV’s, recombination 
rates and positive 
selection tests 

Result 

CNVs + SDs  



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS 

Intra-species variation Fixed mutations 
(differences to other species) 

Single- 
basepair 

Structural 
variation 

Copy Number Variants 

Single-Nucleotide Polymorphisms 

Segmental Duplications 

Fixed Differences 

Source: PMK 

Positive 
Selection 

Positive 
Selection 



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK 
PERIPHERY 

 Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007) 

High likelihood of 
positive selection 

Lower likelihood of 
positive selection 

Not under positive 
selection 

No data about 
positive selection 

Positive selection in the human interactome 



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE 
SELECTION 

•  Peripheral genes are likely to under 
positive selection, whereas hubs 
aren’t 

•  This is likely due to the following 
reasons: 

– Hubs have stronger structural 
constraints, the network periphery 
doesn’t 

– Most recently evolved functions 
(e.g. “environmental interaction 
genes” such as sensory 
perception genes etc.) would 
probably lie in the network 
periphery 

•  Effect is independent of any bias 
due to gene expression differences 

Degree vs. Positive Selection Reasoning 

 * With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection 
(McDonald Kreitmann and LDD) corroborate this result. 

Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007) 

Hubs 



CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs 

•  This result also confirms our initial 
hypothesis – peripheral nodes tend 
to lie in regions rich in SDs.  

•  Since segmental duplications are a 
different mechanism of ongoing 
evolution, the less constrained 
peripheral proteins are enriched in 
them. 

•  Note that despite the small size of 
our dataset for known SD’s we get 
significant correlations. It is to be 
expected that the correlations will 
get clearer as more data emerges* 

Centrality vs. SD occurrence Reasoning 

 * Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome   

Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007) 



BURIED SITES ARE 
CONSERVED AND 
MUCH LESS LIKELY 
TO HARBOR NON-
SYNONYMOUS 
MUTATIONS 

p<<0.01 

Buried 
sites 

dN/dS 
Ratio 

Exposed 
sites 

p<<0.01 

Site with  
Synonymous 

Mutations only 

Sites with 
Non-synonymous 

Mutations 

Average 
Relative 
Surface 
Exposure 

 Source: Kim et al. PNAS (2007) 

Why do we observer this? Perhaps central hub proteins are involved 
in more interactions & have more surface buried. 



Another explanation: THE NETWORK PERIPHERY CORRESPONDS TO THE 
CELLULAR PERIPHERY 

Chromosome 

Nucleus 

Cytoplasm 

Membrane 

Extracellular 
Region 

Betweenness 
Centrality 
(x 104) 

Degree 
Centrality 

 Source: Gandhi et al. (Nature Genetics 2006), Kim et al. PNAS (2007) 



IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR 
THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE 
NETWORK PERIPHERY? 

Source: Kim et al. PNAS (2007) 

Relaxed Constraint Adaptive Evolution 

ILLUSTRATIVE 

•  Increases inter-species 
variation – more variable 
loci are under less negative 
selection 

• Can be seen in higher Ka/
Ks ratio or SD occurrence 

Inter-Species 
Variation (Fixed 
differences) 

Intra-Species 
Variation 
(Polymorphisms) 

•  Increases intra-species 
variation – for the very same 
reason 

• Can be seen in both SNPs 
or CNVs 

•  Increases inter-species 
variation – more variable 
loci are under less negative 
selection 

• Can be seen in higher Ka/
Ks ratio or SD occurrence 

• Should not have effects on 
intra-species variation 



SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE 
PERIPHERY IS DUE TO RELAXED CONSTRAINT 

•  There is a difference in variability 
(in terms of SNPs) between the 
network periphery and the center 

•  However, this difference is much 
smaller than the difference in 
selection 

•  This most likely means, that part of 
the effect we’re seeing is due to 
relaxed constraint (and higher 
variability) 

•  But, not the entire effect* 

Inter vs. Intra-Species Variation in Networks Reasoning 

 * But it’s hard to quantify 

Source: Kim et al. (2007) PNAS 

Inter-Species 
(Fixed 
differences) 

Intra-Species 
(SNPs)  
[ Variability ] 



Similar Results for Large-scale Genomic Changes (CNVs and SDs) 

•  There a small difference in 
variability (in terms of CNVs) 
between the network periphery and 
the center 

•  But, there is a (as shown before) 
marked difference in fixed (and 
hence, presumably, selected) SDs 
at the network periphery and center 

Inter vs. Intra-Species Variation in Networks Reasoning 

Source: Kim et al. (2007) PNAS 

Inter-
Species 
(SDs) 

Intra-Species 
(CNVs)  
[ Variability ] 
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Networks & Variation 2 
Which parts of the network vary most in sequence?  

More generally which features are  
most correlated with evolutionary rate 



Protein evolutionary rate 

Evolutionary rate at the whole protein level 

Why do some proteins evolve slowly, while 
others evolve quickly? 

[Slide from Y Xia] 
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Many Gene Features  
Potentially Correlated with Evolutionary Rate 
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Assess Relationship of Many Different
 Features to Evolutionary Rate in Yeast 
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Simple Relationships between Individual
 Features & Evolutionary Rate 

[Xia et al. ('09). Plos CB] 
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Correlations among top correlates of
 evolutionary rate 
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Information
 contribution of
 protein features

 & 
“meta-features”

 in the task of
 predicting 

slowly evolving
 proteins 

[Xia et al. ('09). Plos CB] 
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Outline: Molecular Networks 

•  Why Networks? 

•  Predicting Networks (yeast) 
◊  Propagating known information 

•  Dynamics & Variation of
 Networks 
◊  Across cellular states (yeast) 
◊  Across environments  
(in prokaryotes) 

•  Protein Networks &  
Variation (yeast & humans) 
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Conclusions on Networks:  
Predictions 

•  Predicting Networks 
◊  Extrapolating from the Training 

Set 

◊  Principled ways of using known 
information in the fullest possible 
fashion 

•  Prediction Propagation 

•  Multi-level learning 
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Conclusions: Network Dynamics
 across Cellular States 

•  Merge expression data with 
Networks 

•  Active network markedly 
different in different 
conditions 

•  Identify transient hubs 
associated with particular 
conditions 

•  Use these to annotate genes 
of unknown function  
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Conclusions: Networks Dynamics
 across Environments 

•  Developed and adapted techniques to
 connect quantitative features of
 environment to metabolism. 

•  Applied to available aquatic datasets, we
 identified footprints that were predictive
 of their environment (potentially could be
 used as biosensor).  

•  Strong correlation exists between a
 community’s energy conversion
 strategies and its environmental
 parameters (e.g. temperature and
 chlorophyll).   

•  Suggest that limiting amounts of cofactor
 can (partially) explain increased import
 of amino acids in nutrient-limited
 conditions.  
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Conclusions: Connecting 
Networks & Variation 

•  We find ongoing evolution (positive 
selection) at the network periphery. 
◊  This trend is present on two levels: 

•  On a sequence level, it can be seen 
as positive selection of peripheral 
nodes  

•  On a structural level, it can be seen as 
the pattern of SDs that display 
significantly higher allele frequencies 
in non-central genes 

◊  2 possible mechanisms for this : adaptive 
evolution at cellular periphery & relaxation 
of structural constraints at the network 
periphery 

•  We show that the latter can only 
explain part of the increased variability 

•    
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Conclusions: Connecting 
Networks & Variation 2 

•  Evolutionary rate is related to 
network positioning  

•  However, only a weak 
relationship, with more 
association with abundance 
and composition  
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TopNet – an automated web tool 

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);  
Similar tools include Cytoscape.org, Idekar, Sander et al] 

(vers. 2 : 
"TopNet-like  

Yale Network Analyzer") 

Normal website + Downloaded code (JAVA) 
+ Web service (SOAP) with Cytoscape plugin 
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More Information on this Talk 
TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks 

SUBJECT: Networks


DESCRIPTION:  
Summit on Systems Biology 2009, The Microbial World and Beyond, 
Richmond, VA, 2009.05.19, 13:00-14:00; [I:3RDSUMMIT] (Long networks 
talk, adding in for the first time: evolrate*. Fits easily into 50’ 
w. 10’ questions. PPT works on mac & PC and has many photos.)  

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily 
cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the 
site. For instance,  
the topic pubnet* can be looked up at  
http://papers.gersteinlab.org/papers/pubnet  ) 

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at  
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to 
relevant papers or link to gersteinlab.org).   
.  
PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see 

http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be easily 

queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt . 


