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Plummeting Cost of Sequencing...
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... has led to the era of
Personal Genomics

* Resequencing of individuals' genomes
* Now for a few, eventually for many

« Easy (!) except for the genome's complex,
REPEAT-CONTAINING STRUCTURE



Step 0: Generate Reads
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Step 1: Call SNPs

using uniquely and correctly mapped reads
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Step 2: Find SVs
with aberrant paired-end reads, split-reads,
read-depth analysis and CGH array data
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[Snyder et al. Genes & Dev. ('09), submitted]

Step 3: Assemble New Sequences

with split-, spanning- and misleading-reads
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Step 4: Phasing

mostly with paired-end reads
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1. Paired ends

Methods to Find SVs
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Breakpointer:
Segmentation of
Array Signal
as precursor to
Read Depth

6- Lectures.GersteinLab.org ¢



LOG RATIO

= Read depth

1.5e+07 2.0e+07 2.5e+07

[Urban et al. ('06) PNAS; Wang et al. Gen. Res ('09)]
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* To get highest resolution on
breakpoints need to smooth &

BreakPtr HMM segment the signal

» BreakPtr: prediction of
breakpoints, dosage and cross-
hybridization using a system
based on Hidden Markov Models
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Korbel*, Urban* et al., PNAS (2007)



BreakPtr statistically integrates array signal and DNA
sequence signatures
(using a discrete-valued bivariate HMM)

Array values

Sequence

Transition A Transition B

Duplication Fe—————- Normal

Transition A’ Transition B’

Korbel*, Urban* et al., PNAS (2007) o



‘Active’ approach for breakpoint identification: initial scoring
with preliminary model, targeted validation (with sequencing),
retraining, and rescoring

SDs
— 2503

i . . N
\ﬂediction of CNV breakpoints
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CNV breakpoints sequenced in ~10 cases following BreakPtr analysis;
Median resolution <300 bp

No improvement in accuracy with higher resolution
(9nt tiling)

HMM optimized iteratively (@
(using Expectation Maximization, EM) Korbel*, Urban* et a/-; PNAS (2007) ~
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Mean-shift-based
(MSB) Segmentation:
no explicit model

For each bin attraction (mean-
shift) vector points in the
direction of bins with most similar
RD signal

No prior assumptions about
number, sizes, haplotype,
frequency and density of CNV
regions

Not Model-based (e.g. like HMM)
with global optimization, distr.
assumption & parms. (e.g. num.
of segments).

Achieves discontinuity-preserving
smoothing

Derived from image-processing
applications
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[Wang et al. Gen. Res ('09) 19:106]
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Some Intuition on how MSB works:

Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF
MSB determines grad. of this function

Data point density
implies PDF value !

Assumed Underlying PDF Real Data Samples

[ Adapted from S Ullman et al. "Advanced Topics in Computer Vision,"
www.wisdom.weizmann.ac.il/~vision/courses/2004_2 ]
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"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls
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"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls
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"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls
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"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls
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"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls
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"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls
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Intuitive Description
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Real Modality Analysis

©)

Tessellate the space Run the procedure in parallel
with windows

[ Adapted from S Ullman et al. "Advanced Topics in Computer Vision
www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]
O
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Real Modality Analysis

O

60, (9) - NN

The blue data points were traversed by the windows towards the mode

® o ®
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RD signal
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Example of Application of MSB to

RD data
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[Wang et al. Gen. Res ('09) 19:106]

MSB works well on array data too
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Looking for
Aberrantly
Placed Paired
Ends

26-
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Normally mapped

reference genome —
g _T 4
! i
(sample) sequence —v—
No SV

End distance < cutoff Ci

'::: l. Py 2 2 *'“:l
Insertion

End distance > cutoff Cd

R ‘ \\ 'l I
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Deletion

PEMer:
Detecting
Structural

Variants
from
Discordant
Paired Ends

in Massive
Sequencing

[Korbel et al.,

Science ('07);

Korbel et al.,
GenomeBiol. ('09)]
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Parameterize
Error Models
through
Simulation

Reconstruction

efficiency at
different
coverage

[Korbel et al.,
GenomeBiol.

('09)]

Reconstruction efficiency

Deletion size Reconstruction efficiency at

5x coverage by 2.5 kb inserts
1000 3
2000 11
3000 49
4000 80
5000 91
6000 92
10000 88
Total 414
False positives 5

100

/

N
o
1

Size of deletion [kb]
— 1 -2
-—3 — 4

5 6

10

15 20 25

Effective span-coverage

29.



Reconstruction of heterozygous

Insertions

5x coverage by 2.5 kb inserts 5x coverage by 10 kb inserts
Insertion size Reconstruction efficiency || Insertion size | Reconstruction efficiency
250 0 1000 8
500 1 2000 42
750 2 3000 72
1000 1 4000 69
1250 8 5000 61
1500 3 6000 55
1750 3 7000 37
2000 1 8000 23
2250 1 9000 -
2500 0 10000 1
2750 0

3000 0

False positives 4 4

Better coverage and fewer reads allow to relax cutoff on outlier lengths and reconstruct more insertions

[Korbel et al., GenomeBiol. ("09)]

30-



5.0 510" e U19)S195)'S8IN}IdT - Hm.

Local
Reassembly



Simple Local Assembly:
iterative contig extension

G Iterative contig elongation with the best supported extension

Current contig(s) G

(=~
Overlapping (w—ve
reads a1 Mostly greedy approach....
=

Current contig(s) GroEEimmET)

Best overlap w/ current contig

.7, Most supported extension

Current contig(s) G amEmmmT 2
J
J
Additional [ )
overlapping _==
reads —
—

Current contig(s) GaEmEmmmT] ! S—
-
Reads for the e
[
assemble of a -
new contig -
Current contig(s) GEmEmmT i )
——
Output contig(s) EEmEmmm ) e

Du et al. (2009), PLoS Comp Biol.

(c) '09
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Optimal integration of sequencing technologies:

Local Reassembly of large novel insertions

Given a fixed budget, what are the sequencing coverage A, B and C that can achieve the maximum
reconstruction rate (on average/worst-case)? Maybe a few long reads can bootstrap reconstruction process.

A

Reference genome [ | . Hﬂ ¢ ——

Elsewhere 1n

- - —
genome 9 =" ] S ) = =3 S rl
| ——
B
Reads s —— [F— —) W) L) esssale) @)
Similar-read Split-read Spanning-reads Split-read Misleading-  Same-
(s ] [ [(~— R ——— read read

\

G Long reads: A-x coverage |

I
! Highly | : | .
: - 2 represented ! | @IS Medium reads: B-x coverage |
i S J regions i :\ @ Short reads: C-x coverage ':
i @  Mismatches ) ¥s========================== ¢

(c) '09
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Optimal integration of sequencing technologies:
Need Efficient Simulation

Different combinations of technologies (i.e. read lenghs) very expensive to actually test.
Also computationally expensive to simulate.

(Each round of whole-genome assembly takes >100 CPU hrs; thus, simulation exploring 1K possibilities takes
100K CPU hr)

C Simplification of the simulation to the insertion region only

I Large novel insertion i

1z ] |< rl S r2 >| I

. (I s S S——— - N — ”
I I
I [

(c) '09

T
Du et al. (2009), PLoS Comp Biol, in presst™



Optimal integration of sequencing technologies:
Efficient Simulation Toolbox using Mappability Maps

C Simplification of the simulation to the insertion region only

I |< Large novel insertion i
72 | rl S r2 >| | i
(= |
I I
1 1

D Compute mapability maps to scale to the whole genome

Count of occurrences of &-mers in the whole genome

~100,000 X
speedup

Genomic

(c) '09
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Gl ) D) e - -
' | Processed by a simplified |
'::: assembler (llustrated in G) !
F Output after applying de novo assembly to reads from E

| NS PR E— "
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Small errors False exctension  Gap Du et al. (2009), PLoS Comp Biol, in presstn



Optimal integration of sequencing technologies:

Simulation shows power of PEs

Simulation results w/ shotgun & paired-end reads on the same ~10Kb insertion

A

2.88x
2.4x
1.92x

1.44x

0.96x

coverage w/ medium PE reads

0.48x

0x

Mean(recovery rate) _ ~ ~
-

o

-
-
-

44x —
.92x —
2.4x

x x
oo} (<]
< @ .
o o ~— ~—
coverage w/ medium reads
Total cost: $2 on a ~10Kbp insertion(short reads not shown)

2.88x

0.8

0.6

0.4

0.2

0.0

(c) '09
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Optimal integration of sequencing technologies:

Simulation shows combination vetter than single technoloqgy

A Long reads coverage

1

x
<
©
o

/e \

Simulation results w/
shotgun long, medium
and short read
sequencing on a ~10Kb
novel insertion using a
fixed total budget

oy}

coverage w/ short (Solexa) reads
&
x
]

O

coverage w/ short (Solexa) reads
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Result dependent
on specific
parameter setting
of different
sequencing
technologies
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Analyzing Repeated
Blocks in the Genome

(SDs & CNVs)

38



080907_SD_CNV_Slides MBG_CEGS_PMK

SEGMENTAL DUPLCATIONS AND COPY NUMBER VARIANTS ARE
RELATED PHENOMENA AND HAVE BEEN CREATED BY SEVERAL
DIFFERENT MECHANISMS

.g. Alu, LINE...
(e.g. Alu, ) In some cases <4bp

microhomologies

. NAHR 38 NHEJ
- (Non-allelic homologous N
el Nyt (Non-homologous-end-
recombination) Qq.&. joining)
l FI k t ..“@&A('ums ]
anking repea j.’.t“’;:'\fp‘,w NO (flanking) repeats.

J

‘!
)
~)
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080907_SD_CNV_Slides MBG_CEGS_PMK

PERFORM LARGE SCALE CORRELATION ANALYSIS TO DETECT REPEAT
SIGNATURES OF SDs AND CNVs

If exact CNV breakpoints are
known, we can calculate the
enrichment of repeat
elements relative to the
genome or relative to the local
environment

Exact match

Local environment

...ATCAAGG

CCGGAA...

@

@

Survey a range of genomic
features

Count the number of
features in each genomic
bin (100kb)

Calculate correlations /
enrichments using robust
stats

Genomic
bin

- N O =

N = O O

o = O O

o N O =

- O O O
o O = O
- O - O

Alu

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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OLDER SDs ARE MUCH MORE LIKELY TO BE FORMED BY ALU ELEMENTS

080907_SD_CNV_Slides MBG_CEGS_PMK

0.14

0.14

0.13

Alu association with SDs by age

0.12

0.09

0.08

90-92%

o

92-94%

94-96%

96-98%

98-99%

>99%

* The co-localization of Alu
elements with SDs is highly
significant.

* Older SDs have a much
higher association with Alus

than younger SDs.

* Hence it is likely, that Alu
elements were more active
in mediating NAHR in the
past (consistent with the Alu
burst)

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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TO A POWER-LAW DISTRIBUTION

080907_SD_CNV_Slides MBG_CEGS_PMK

FOCUSSING ON SDS: SDS CAN PROPAGATE THEMSELVES, WHICH LEADS

Hypothesis Corollary
e
) * SDs can mediate NAHR and lead to the
formation of CNVs
o * CNVs can become fixed and then be SDs
l NAHR
* Such mechanisms (“preferential attachment”) are
1 SD + CNV well studied in physics and should leads a very
skewed (“power-law”) distribution of SDs.
l Fixation " '
2 SDs
“SD selfpropagation” |
-

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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FOCUSSING ON SDS: SDs COLOCALIZE WITH EACH OTHER

Hypothesis Corollary

-

sSD * SDs can mediate NAHR and lead to the

formation of CNVs
T * CNVs can become fixed and then be SDs
l NAHR
* SDs of similar age should co-localize better with
1SD + CNV each other:
l Fixation
2 SDs
“SD self-propagation”

-

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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Pseudogenes & CNV/SDs (whole genome, not just encode pilot)

080907_SD_CNV_Slides MBG_CEGS_PMK

/

N

Pseudogene association with SDs by age

Duplicated pseudogenes
associated with SDs,

0.32 0.28 0.21 particularly older ones
) 0.17
0.11 0.1 SDs comprise ~5% of the
human genome but contain
~18% genes, 46% duplicated
pgenes and 22% processed
90-92%  92-94% 94-96% 96-98% 98-99% >99% pgenes
Processed Pseudogenes:
) i serving as repeats for
Processed pseudogenes at SD junctions mediatgilng NApHR
144
Duplicated Segments
—)— ]
40
p<<0.001
No. of Number of
SDs with matching - ——
matching pseudogenes .
pseudogenes expected Matching pseudogenes
at matching at random
junctions

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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ASSOCIATIONS ARE DIFFERENT FOR SDs AND CNVs

CNVs ARE LESS

o ] ASSOCIATED WITH
SD association with repeats SDs THAN THE
GENERAL SD TREND
0.27 0.21 CNV
0.094 0.07 Association
| | | | with SDs
Alu Microsatellite Pseudogenes LINE 0.31
0.11
CNV association with repeats
0.0759 0.0466 0.048
0.0006 | — | >99% SDs*  CNVs
Microsatellite Pseudogenes LINE

--

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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NAHR

NHEJ

Alu
SD
LINE
Microsatellite
Subtelomeres
Fragile sites
CNVs Young SDs Old
High seq-ID (%) Low seq-ID (%)
‘ :
Fixation Aging (~40Mya)
o.1§“ ...................
— LINE/L1
0.141 —— Alu
sD
@ 0.12F
g; 0.1 / /A\
Soo0s | / \\\
Soo0e /| / o
& 0.04 / P / N
//' A
0.02¢ /S \\
ol=—"" ‘ L~ , S~
0 10 20 30 40
Percent divergence

Alu Burst (40 MYA)

AFTER THE ALU BURST, THE
IMPORTANCE OF ALU
ELEMENTS FOR GENOME
REARRANGEMENT
DECLINED RAPIDLY

Vs

* About 40 million years ago
there was a burst in
retrotransposon activity

* The majority of Alu elements
stem from that time

* This, in turn, led to rapid
genome rearrangement via
NAHR

* The resulting SDs, could
create more SDs, but with Alu
activity decaying, their
creation slowed

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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summary:

Looking Back Over the Talk

47-
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Identifying Structural Variants in Human

Population
* BreakPtr « PEMer
() Model-based segmentation () Detecting Variants from
using bivariate HMM discordantly placed paired-
. MSB ends

() Simulation to paramaterize

¢ Mean-shift segmentation He
statistical model

approach following grad. of

PDF  ReSeqSim

() Equally applied to aCGH and () Efficiently simulating
depth of coverage of short assembly of a representative
reads variant

() Shows that best
reconstruction has a

combination of long, med.
and short reads
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Analysis of Duplication in the Genome:
SVs and SDs

» Large-scale analysis of existing CNVs & SDs in
human genome

« SDs assoc. with Alu, pseudogenes and older SDs

* CNVs assoc. other repeats (microsat.) and not as
much with SDs

« Suggestion: Alu burst 40 MYA triggered much NAHR
rearrangement, then dupl. feed on itself in hotspots
but now dying down and NAHR assoc. with other
repeats and CNVs also from NHEJ
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More Information on this Talk

SUBJECT: GenomeAssembly

DESCRIPTION:

Banbury meeting on Structural Variation in the Human Genome, Lloyd
Harbor, NY 2009.11.17, 9:00-9:20; [I:BANBURYCNV] (Adaption of
GenomeAssembly talk, building on [I:BIBM].)

(Works equally well on mac or PC. Paper references in the talk were mostly from
Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each
topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic can be looked up at

http://papers.gersteinlab.org/papers/ )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see

(¢)'09

http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily
queried from flickr, vizz http: //www. f1lickr.com/photos/mbgmbg/tags/kwpotppt
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