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2001: Most of the genome is not coding (only ~1.2% exon).
It consists of elements such as repeats, regulatory regions,

non-coding RNAs, origins of replication, pseudogenes,
segmental duplications....What do these elements do? How should

[THGSC, Nature 409, 2001]
they be annotated? [Venter et al. Science 29, 2001] -
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2007 : Pilot results from ENCODE Consortium on

decoding what the bases do

- 1% of Genome (30 Mb in 44 regions)
- Tiling Arrays to assay Transcription & Binding
- Multi-organism sequencing and alignment

- Careful Annotation [IHGSC, Nature 409, 2001]

- Variation Data [ENCODE Consortium, Nature 447, 2007] .
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Human DNA, the Ultimate Spot for Secret Messages (Are Some There Now?)

By DENNIS OVERBYE
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The remaining 97 percent, so-called junk DNA,
looks like gibberish. It’s the dark matter of inner space

We don’t know what it is Saying to or about us, but within
that sea of megabytes there is plenty of room for the
Imagination to roam, for trademark labels and much
more. The King James Bible, to pick one obvious exam-

Ple, only amounts to about five megabytes

If a bacterium can be encoded
with E=mc2, if cockroaches can
be archives, why not us?

¢, you t 1o

ine 1 fy ¢,
there is already s written in th
chive, whether artibartfas
are walking aro

been here &
tle trade
and folded
ersity of Ca

& genetic
anta Cruz, who mentioned

1 out that the problem with
who look will see
they aren’t there — the
years to have found

sages in the genome ¢
way people have claimed in 1
S In the Bible

heless, no less
» co-discoverer o e helix, writing with

joubl
ist Leslie Orgel, now at the Salk Institute in San
ggested in 1973 that the primitive Earth was
ith DNA broadcast through space by an alien

> than Francls

species
As a result, it has been suggested that the search

for extraterrestrial intelligence, or SETI, should look in-
ward as well as outward. In an article in New Scientist,
Paul Davies, a ¢ osmologist at Arizona State University,

Different Views of the

Function of Junk DNA
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This is the major polst

Using the same code that computer keyboards use, the
Japanese group... wrote four copies of Albert Einstein’s famous

formula, E=mc2... into the bacterium’s genome... In so doing they
have accomplished at least a part of the dream that Jaron Lanier,
a computer scientist and musician, and David Sulzer, a biologist
at Columbia, enunciated in 1999. To create the ultimate time
capsule as part of the millennium festivities at this newspaper,
they proposed to encode a year’s worth of the New York Times
magazine into the junk DNA of a cockroach. “The archival
cockroach will be a robust repository,” Mr. Lanier wrote, “able to
survive almost all conceivable scenarios.”
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sections of iunk DNA seem to be markedly resistant to
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How might we

annotate a human |_

text?

Coloris
Function

Lines are

Similarity

[B Hayes,
Am. Sci.
(Jul.- Aug.
’06)]

F YOU WANT TO BE a thorough-

goig werldtaveler, younced.fe,
learn 6,912 ways to say “Where is the |

ltoilet, please?” That’s the number of |
SIAngudges KROW 10 Be spoKen Dy the.

peoples of planet Earth, according to
Ethnologue.com.

If you want to be the complete poly
glot you also have quite

a challenge ahead of you, learning all

Iprintf("hello, world\n") ; I

(This one 1s In C.) A catalog maintamned
by Bill Kinnersley of the University of
Kansas lists about 2,500
languages. Another survey, compiled
by Diarmuid Piggott, puts the total
even higher, at more than 8,500. And
keep in mind that whereas human lan
guages have had millennia to evolve
and diversify, all the computer languag
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we’ve
been inventing one language a week,
on average, ever since Fortran.

For ethnologists, linguistic diversity
is a cultural resource to be nurtured
and preserved, much like biodiversity.

L

Brian Hayes

Every|programmer

knows there is one

truelprogramming
language. A new one
every week

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There are[programmers Jof my ac-
quaintance who will dispute that last
statement. I expect to hear from them.
They will argue—zealously, ardently,
vehemently—that we have indeed
found the right programming lan-
guage, and for me to claim otherwise
is willful ignorance. The one true lan-
guage may not yet be perfect, they’ll
concede, but it’s built on a sound foun
dation and solves the main problems,
and now we should all work together
to refine and improve it. The catch, of
course, is that each of these friends will

I?he Semicolon Wars |

cide which end of a boiled egg to crack.
This famous tempest in an egg cup was
replayed 250 years later by designers of
computer hardware and communica
tions protocols. When a block of data is
stored or transmitted, either the least-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if everyone made the same
choice. But that’s not what has hap-
pened, and so quite a lot of hardware
and software is needed just to swap
ends at boundaries between systems.
This modern echo of Swift’s Endian
wars was first pointed out by Danny
Cohen of the University of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace.”
The memo, subsequently published
in Computer, was widely read and ad-

mired; the plea for peace was ignored.
hother feua—iargely forgoffen,-l

I think, but never settled by truce or
treaty—focused on the semicolon. In
Algol and Pascal, program statements
haVe to be separafed Dy semicolons. ror
example, inx:=0; y:=x+1; z:=2the
semicolons tell the compiler where one
statement ends and the next begins. C
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Overview of the Process of
Annotation of non-coding Regions

« Basic Inputs

Doing large-scale similarity comparison,
looking for repeated or deleted regions

2. Functional Genomics.

Determining experimental signals for activity (e.g. transcription)
across each base of genome

Finding repeated or deleted blocks in the genome

1. As a function of similarity (i.e. age, perhaps using explicit models)

2. vs. other organisms, vs. human reference, or within the human population
(synteny, SDs, and CNVs)

3. Big and small blocks
(duplicated regions and retrotransposed repeats)

4. Creation of formal annotations (e.g. genes and pseudogenes)



ENCODE + modENCODE Consortia
for functional annotation & 1KG Consortium for variable
blocks in human population

— g,
E N C O D E Centromere //‘. polymerase

specification
Condensation ————— Histone Replication origins and
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/ timing,
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Generate
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Epigenetics and transcription regulation Replication Transcription and splicing

Microarray or
sequence

[ Celniker et al., Nature ('09) 459:927 ]

1000 Genomes

A Deep Catalog of Human Genetic Variation
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Technologies used for Interrogating the
Human Genome, over the past 6 years:
Reading out "active" or "tagged” regions

Tiling Arrays
- N | - p=q_ 5 Applicationina
" variety of
‘02 contexts:
800 bp PCR Products
‘ ~ Transcription
04 36mer Oligonucleotide Array Mapping
Massively Parallel Sequencing DNA bim_:ling (inc.
chromatin struc.)
‘06+ AGTTCACCTAAGA... Replication

.\ | ‘ m—  CTTGAATGCCGAT...

— 1} GTCATTCCGCAAT. . Structural
Variation



Plummeting Cost of Sequencing

o 10

1000000000 -
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[Greenbaum et al., Am. J. Bioethics ('08)]
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Outline

» Calling Variable Blocks in Genome
(CNVs,SDs)

Calling them with various signal
processing approaches

* Analyzing Association of Variable

Blocks with repeats, in relation to
formation mechanisms

11.
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Terminology for Variable Duplicated Elements in the Human Genome

[ ] [ 1] [ ]
Blocks in both CNVs (variable blocks in the Fixed SDs ("fixed" blocks in the
mouse & human human population) human population)
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Segmental duplications (SDs) - Recent duplications
(~40 million years and younger)

12.



Terminology for Variable Duplicated Elements in the Human Genome

Venter

Stoicescu Watson

[ ] ] 1]

Blocks in both CNVs (variable blocks in the Fixed SDs ("fixed" blocks in the

|

Parent Paralog Pseudogene
gene
B = s> 00 ¢ P

Segmental duplications (SDs) - Contain Duplicated

Paralogs and Duplicated Pseudogenes

13.



Step 0: Generate Reads

- ;

Step 1: Call SNPs

using uniquely and correctly mapped reads

Target
Genome
Step 2: Find SVs
with aberrant paired-end reads, split-reads,
read-depth analysis and CGH array data
- e -pa{re‘;e"d‘reé‘h ——
split_—re_ad
|
e -t
read-de| [ ] — - e = = [ —]
data - - . - .-
™
—
CGH array
data
Reference
Genome
Delléiion /’ \
i \
/ Inserfion \ Target
—Genome
Duplication - _ R 4

Main Steps in
Genome
Resequencing

[Snyder et al. Genes & Dev. ('09), submitted]

Step 3: Assemble New Sequences

with split-, spanning- and misleading-reads

spanning-read
Sammens
misleading-read

B I —

()09

Step 4: Phasing

mostly with paired-end reads

- - g

; .

b, : o

., — | EESGired-end read

| | N ——— ————

SNP/indel s #
! ;  Insertion (heterozygous) Inversion| (heterozygous)
Y v v " A Target '
[r—— . Diploid
S~ - Genome ~

Duplication



1.Pairedends  \ethods to Find SVs

Deletion

Reference #
© *
© *
* *

o .
sy & Mapping 0.“."
bed
Genome *
* o

& *
* <
* *
* *
— [ —
s W e Reference

2. Split read 3. Read depth (or aCGH)

Reference # Reference #
< * : < &
< * : * *
* & : * *
* * : * <&
* * ¢ * <
< < Q‘ *
Genome * Genome *

° L3
* a .
Sequenced ‘/‘paired-ends

Read T Reads — —_— -

@ Mapping @ Mapping
Read count
Reference  wwww mmmmmm we

Zero level

4. Local Reassembly

15.



Segmentation of
Array Signal
(a precursor to
Read Depth)

1 6- Lectures.GersteinLab.org ¢



* To get highest resolution on
breakpoints need to smooth &

BreakPtr HMM segment the signal

» BreakPtr: prediction of
breakpoints, dosage and cross-
hybridization using a system
based on Hidden Markov Models

0.5 '
0| s I RSP eusrvesl
-0.5
ACGTGACAC ATAAGCACACCA ATTGCTTGAGGGACCT [TA{3GCACAGT TAAC ATGATAAGCACACCA ATTGCTTGAGGTGAC
sequence NOT TO SCALE

Fluorescence
log2 ratio

O
pzd
>

—a—a .

Gain
Normal —. I . I
| I [

http://breakptr._qers.teinlab.orq‘l:|

Loss

Korbel*, Urban* et al., PNAS (2007)



BreakPtr statistically integrates array signal and DNA
sequence signatures
(using a discrete-valued bivariate HMM)

Array values

Sequence

Transition A Transition B

Duplication Fe—————- Normal :

Transition A’ Transition B’

Korbel*, Urban* et al., PNAS (2007)



‘Active’ approach for breakpoint identification: initial scoring
with preliminary model, targeted validation (with sequencing),
retraining, and rescoring

SDs
— 2503

i . . N
\ﬂediction of CNV breakpoints

500

normalized fluorescent
intensity log,-ratios

400

/ Breakpoint
validation

-~ 1003

— [intermediate B]

[sequencing

300

Maximum number of parameters per transition state

Model S otemedite ] |©
. . 10 = [Intermeaiate =
par.ame.ter Training data o  leore]|
estimation D | RS .
= O
Parameter Gold standards <l } g
optimization ; 1 . e
I I 1 1 1 I |
0.0 0.5 1.0 15 20 25 3.0

log 10 (number of CNVs available for parameter estimation)

CNV breakpoints sequenced in ~10 cases following BreakPtr analysis;
Median resolution <300 bp

No improvement in accuracy with higher resolution
(9nt tiling)

HMM optimized iteratively )
(using Expectation Maximization, EM) Korbel*, Urban* et a/-; PNAS (2007) ~



Depth from

sequencing

Read

60, (9)




Individual genome

Reads

Reference genome

Read depth signal

Zero level

Read depth

@ Mapping

@ Counting mapped reads

0
0

0
(
)

[Wang et al. Gen. Res ('09) 19:106]
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Mean-shift-based
(MSB) Segmentation:
no explicit model

For each bin attraction (mean-
shift) vector points in the
direction of bins with most similar
RD signal

No prior assumptions about
number, sizes, haplotype,
frequency and density of CNV
regions

Not Model-based (e.g. like HMM)
with global optimization, distr.
assumption & parms. (e.g. num.
of segments).

Achieves discontinuity-preserving
smoothing

Derived from image-processing
applications

A 4

A -
I I I I
I | Ly € 1
© I I > €
c I S 1 I
oT) »> I 1 1 |
B > T € > » € | >
I 1 1 1
E I | 1 1
1.3 )4( | | |
Sl <€ I I
I | 1 1
I | 1 I
A ’ 2
- — -
— —_— -— -— - :—
- -
- - ™
o —
Bins

[Wang et al. Gen. Res ('09) 19:106]
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Some Intuition on how MSB works:
Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Data point density
implies PDF value !

‘ _

Assumed Underlying PDF Real Data Samples

[ Adapted from S Ullman et al. "Advanced Topics in Computer Vision," www.wisdom.weizmann.ac.il/~vision/courses/2004_2 ] 4]



Some Intuition on how MSB works:
Non-Parametric Density Estimation

Assumed Underlying PDF Real Data Samples

[ Adapted from S Ullman et al. "Advanced Topics in Computer Vision," www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ] H



"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls

~
Y
\
N
\,
-
A
N
S
RN
~
~
N

Region of
interest

|

Center of
mass

Mean Shift
vector

——

25 - Lectures.GersteinLab.org ¢



"Advanced Topics in Computer Vision,"

[ Adapted from S Ullman et al.

Intuitive Description

Region of
() interest

&
Center of
¢ mass
¢ &
& &

v @ »
g
2 9
o 0,
: © s
: -
g 3
e - £
5 ° ° ® e o Mean Shift | -
2 o vector @
£ . : . ) =
3 Objective : Find the densest region g
'S n - u = = = . -l
% Distribution of identical billiard balls \6
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"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls

Region of
interest

|

Center of
mass

[

Mean Shift
vector

——

2 7- Lectures.GersteinLab.org ¢



"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls

Region of
interest

|

Center of
mass

[

Mean Shift
vector

——

28 - Lectures.GersteinLab.org ¢



"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls

Region of
interest

|

Center of
mass

Mean Shift
vector

——

29 - Lectures.GersteinLab.org ¢



"Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]

[ Adapted from S Ullman et al.

Intuitive Description

Objective : Find the densest region
Distribution of identical billiard balls

Region of
interest

|

Center of
mass

Mean Shift
vector

——

30 - Lectures.GersteinLab.org ¢



Intuitive Description

® Region of
¥ ® ° ® interest
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PY mass
g ° ¢ ?
2
5 o © Y,
5 o
3 ° 9 9
o]
s ®
gs @ o ©
gs
=2 o o
T B
3] g .
=<<l£ ® o g)
53 ° o ° o o 5
3 2
g5 ¢ :
= ° ° ® ® ® g
N o g
£ 3 o @
S E .. . . 5
58 Objective : Find the densest region E
B s . g . . . gy -~
8 % Distribution of identical billiard balls 5
<
= ™



Real Modality Analysis

©)

Tessellate the space Run the procedure in parallel
with windows

[ Adapted from S Ullman et al. "Advanced Topics in Computer Vision
www.wisdom.weizmann.ac.il/~vision/courses/2004 2 ]
O

32



Real Modality Analysis

O

60. (0) - m. m.

The blue data points were traversed by the windows towards the mode

® o ®

[ Z #002/S9SIN02/UOISIA~/|I" OB  UUBLIZIDM  LUOPSIM MMM
. UOISIA J83ndwo) ul soido) pasueapy,, ‘|e 18 uew|n S wouy pajdepy ]



Computing The| Mean Shift

Yet another Kernel
density estimation !

Simple Mean Shift procedure:

« Compute mean shift vector

*Translate th

m(x) =

n

2 X, g

2

|x-x,]

h

n

3

2
|x-x,|

h

I?'n

2

\

v ﬂ-
Xigi

\

- -~ X
25

[ Adapted from S Ullman et al. "Advanced Topics in Computer Vision,"

www.wisdom.weizmann.ac.il/~vision/courses/2004 2]

(c) '09



RD signal

N
(=4
o

GC bias correction

-
=23
(=)

160

140

120

100

80

60

40

20

l !
80

|
100

200

180

160

140

120

100

i

1

L1

L 111

L1

L1l
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GC content GC content
RDcorrected = RDgIobaI RD/RDGC
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Example of Application of MSB to

RD data

mmmm

| |
110.25

| |
110.2

| |
110.15

TR T

il

| |
110.05

110.1

110

Chromosome 2 position, Mbp



RD by lllumina

RD by SOLiD

RD by Helicos

RD works well on a variety of
sequencing platforms

;—'ﬂ' ...... B .ii:A ssnTTTE s At e e H ........... "
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= N | |
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il ji T Y 1A FW I o W B
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Position on chromosome 20, kb

[NA18505]
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[Wang et al. Gen. Res ('09) 19:106]

MSB works well on array data too

-05 05
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MSB w postprocessing

GLAD
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1 1 T 1 T
500 1000 1500 2000 2500
wavelet

lowess
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Looking for
Aberrantly
Placed Paired
Ends

39.
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Normally mapped

reference genome —
g _T 4
! i
(sample) sequence —v—
No SV

End distance < cutoff Ci

'::: l. Py 2 2 *'“:l
Insertion

End distance > cutoff Cd

R \\ l’
\ '
\ \\ ,’ '
':: \ \vl ‘I
Deletion

PEMer:
Detecting
Structural

Variants
from
Discordant
Paired Ends

in Massive
Sequencing

[Korbel et al.,

Science ('07);

Korbel et al.,
GenomeBiol. ('09)]
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Marker Marker . .
i circularize O
@ shear into | 1 verall

fragments fragments of length L
DNA of sample
o I Strateqy for
N Analysis of
select for marker | . cleave randoml
— | - - NextGen
N Seq. Data
Next generation DNA sequencing, followed by PEMer analysis to Detect
[1] construct pre-processing [4] outlier-identification l
[2] read-alignment Stru Ctu ra I
[3] optimal paired-end placement Va ri a nts
l [5] outlier-clustering End distance < cutoffCi

. cutoffs
Cluster 1 M different N C: Cy

R cluster sizes \ /
’ A E g N\
R . PR - N
rg ey ’ ’ \ \ HH
H 3 ® " \. L

;.‘l:‘#——-q-*!:] A N -
e , l:' o . > g-
‘I [ - e—— k] Insertion %
Insertion . S o b
End distance > cutoff Cd o §7 =
Cluster 2 :__’

Py
A
v.

[ h—————ant )/ \ \\ 'l Y -
( Deletion \\ \\ 1' l’ 0 5000
m—_—v—.—w di
Deletion m " "Paired-end span [bp] [Korbel et al.,
Science ('07);
. . i Korbel et al.,
[6] cluster-merging [7] Display/storage of final SV set ‘ o GenomeBiol. ('09)]




Parameterize
Error Models
through
Simulation

Reconstruction

efficiency at
different
coverage

[Korbel et al.,
GenomeBiol.

('09)]

Reconstruction efficiency

Deletion size Reconstruction efficiency at

5x coverage by 2.5 kb inserts
1000 3
2000 11
3000 49
4000 80
5000 91
6000 92
10000 88
Total 414
False positives 5

100

/

N
o
1

Size of deletion [kb]
— 1 -2
-—3 — 4

5 6

10

15 20 25

Effective span-coverage

42.



Reconstruction of heterozygous

Insertions

5x coverage by 2.5 kb inserts 5x coverage by 10 kb inserts
Insertion size Reconstruction efficiency || Insertion size | Reconstruction efficiency
250 0 1000 8
500 1 2000 42
750 2 3000 72
1000 1 4000 69
1250 8 5000 61
1500 3 6000 55
1750 3 7000 37
2000 1 8000 23
2250 1 9000 -
2500 0 10000 1
2750 0

3000 0

False positives 4 4

Better coverage and fewer reads allow to relax cutoff on outlier lengths and reconstruct more insertions

[Korbel et al., GenomeBiol. ("09)]
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Optimal integration of sequencing technologies:

Local Reassembly of large novel insertions

Given a fixed budget, what are the sequencing coverage A, B and C that can achieve the maximum
reconstruction rate (on average/worst-case)? Maybe a few long reads can bootstrap reconstruction process.

A

Reference genome [ | . Hﬂ ¢ ——

Elsewhere 1n

- - —
genome 9 =" ] S ) = =3 S rl
| ——
B
Reads s —— [F— —) W) L) esssale) @)
Similar-read Split-read Spanning-reads Split-read Misleading-  Same-
(s ] [ [(~— R ——— read read

\

G Long reads: A-x coverage |

I
! Highly | : | .
: - 2 represented ! | @IS Medium reads: B-x coverage |
i S J regions i :\ @ Short reads: C-x coverage ':
i @  Mismatches ) ¥s========================== ¢

(c) '09

T

Du et al. (2009), PLoS Comp Biol, in press\t



Optimal integration of sequencing technologies:
Need Efficient Simulation

Different combinations of technologies (i.e. read lenghs) very expensive to actually test.
Also computationally expensive to simulate.

(Each round of whole-genome assembly takes >100 CPU hrs; thus, simulation exploring 1K possibilities takes
100K CPU hr)

C Simplification of the simulation to the insertion region only

I Large novel insertion i

1z ] |< rl S r2 >| I

. (I s S S——— - N — ”
I I
I [

(c) '09

)
Du et al. (2009), PLoS Comp Biol, in press\t



Optimal integration of sequencing technologies:
Efficient Simulation Toolbox using Mappability Maps

C Simplification of the simulation to the insertion region only

I Large novel insertion i
r2 | I< rl S r? >| I )
S I T = o F—

| |

| |

D Compute mapability maps to scale to the whole genome

Count of occurrences of &-mers in the whole genome

~100,000X
speedup

Genomic

TEmmmmmT o 1 | position
E Simulate the reads \
Misleading-read
— ——— Stmilar-read -
Additional Ready] 7™ e p——
from elsewhere —— R L With g
(™~ (70— ) - . 5
-l e o r sequencing
| error
Reads from models
ﬂ/le iﬂsertioﬂ @ [ ;d; I=
Gl ) D) e - -
| Processed by a simplified |
5 4 assembler (illustrated in G) :
F Output after applying de novo assembly to reads from E
- - M hl

Small errors False extension Gap Du et al. (2009), PLoS Comp Biol, in press<



Optimal integration of sequencing technologies:
Efficient Simulation using A Simplified Assembler

G Iterative contig elongation with the best supported extension

Current contig(s) G

(™
Overlapping (np
reads =
(P
Current contig(s) GuoGmEmmT
Best overlap w/ current contig
¢, Most supported extension
Current contig(s) Gl y
J
J
Additional ——
M J
overlapping =
reads —
—
Elongate with the best supported extension s
Current contig(s) GaEmEmmmT] N )
[V ]
Reads for the —
ble of
assemble of a -
new contig ()
Current contig(s) GaEmEmmm ] I - L
a——
Output contig(s) GrEmEmmm] N e P — m

Du et al. (2009), PLoS Comp Biol, in press\t



Optimal integration of sequencing technologies:

Simulation shows power of PEs

Simulation results w/ shotgun & paired-end reads on the same ~10Kb insertion

A

2.88x
2.4x
1.92x

1.44x

0.96x

coverage w/ medium PE reads

0.48x

0x

Mean(recovery rate) _ -
-

-
-

-
-

-
-
-

0x

44x —
.92x —
2.4x

x
o
°’.
o

0.48x

1—. ~—
coverage w/ medium reads
Total cost: $2 on a ~10Kbp insertion(short reads not shown)

2.88x

0.8

0.6

0.4

0.2

0.0

(c) '09

N
Source: Du et al. (2009), PLOS Comp Biol, in press St



Optimal integration of sequencing technologies:

Simulation shows combination vetter than single technoloqgy

A Long reads coverage

1

x
<
©
o

/e \

Simulation results w/
shotgun long, medium
and short read
sequencing on a ~10Kb
novel insertion using a
fixed total budget

oy}

coverage w/ short (Solexa) reads
&
x
]

O

coverage w/ short (Solexa) reads
¢

Mean(recovery rate)

<
B
-
0

'. Short reads coverage

I

X X X X x X
¥ © o o i X ©
[SURE- T o

0
verage w/ medium (454Treads

Min(recovery ratd)

84x

12x

()
=

aage w/ me

4.8x
6
2.

d

x x x
<

ium (454) read

x
©

F N 0 o

1.0

0.8

0.6

04

0.2

0.0

Result dependent
on specific
parameter setting
of different
sequencing
technologies

()09

S

Du et al. (2009), PLOS Comp Biol, in press L)



Analyzing Repeated
Blocks in the Genome

(SDs & CNVs)

51



080907_SD_CNV_Slides MBG_CEGS_PMK

SEGMENTAL DUPLCATIONS AND COPY NUMBER VARIANTS ARE
RELATED PHENOMENA AND HAVE BEEN CREATED BY SEVERAL
DIFFERENT MECHANISMS

.g. Alu, LINE...
(e.g. Alu, ) In some cases <4bp

microhomologies

. NAHR 38 NHEJ
- (Non-allelic homologous N
el Nyt (Non-homologous-end-
recombination) Qq.&. joining)
l FI k t ..“@&A('ums ]
anking repea j.’.t“’;:'\fp‘,w NO (flanking) repeats.

J

‘!
)
~)
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PERFORM LARGE SCALE CORRELATION ANALYSIS TO DETECT REPEAT
SIGNATURES OF SDs AND CNVs

If exact CNV breakpoints are
known, we can calculate the
enrichment of repeat
elements relative to the
genome or relative to the local
environment

Exact match

Local environment

...ATCAAGG

CCGGAA...

@

@

Survey a range of genomic
features

Count the number of
features in each genomic
bin (100kb)

Calculate correlations /
enrichments using robust
stats

Genomic
bin

- N O =

N = O O

o = O O

o N O =

- O O O
o O = O
- O - O

Alu

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]

53



OLDER SDs ARE MUCH MORE LIKELY TO BE FORMED BY ALU ELEMENTS

080907_SD_CNV_Slides MBG_CEGS_PMK

0.14

0.14

0.13

Alu association with SDs by age

0.12

0.09

0.08

90-92%

o

92-94%

94-96%

96-98%

98-99%

>99%

* The co-localization of Alu
elements with SDs is highly
significant.

* Older SDs have a much
higher association with Alus

than younger SDs.

* Hence it is likely, that Alu
elements were more active
in mediating NAHR in the
past (consistent with the Alu
burst)

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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TO A POWER-LAW DISTRIBUTION

080907_SD_CNV_Slides MBG_CEGS_PMK

FOCUSSING ON SDS: SDS CAN PROPAGATE THEMSELVES, WHICH LEADS

Hypothesis Corollary
e
) * SDs can mediate NAHR and lead to the
formation of CNVs
o * CNVs can become fixed and then be SDs
l NAHR
* Such mechanisms (“preferential attachment”) are
1 SD + CNV well studied in physics and should leads a very
skewed (“power-law”) distribution of SDs.
l Fixation " '
2 SDs
“SD selfpropagation” |
-

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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FOCUSSING ON SDS: SDs COLOCALIZE WITH EACH OTHER

Hypothesis Corollary

-

sSD * SDs can mediate NAHR and lead to the

formation of CNVs
T * CNVs can become fixed and then be SDs
l NAHR
* SDs of similar age should co-localize better with
1SD + CNV each other:
l Fixation
2 SDs
“SD self-propagation”

-

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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Pseudogenes & CNV/SDs (whole genome, not just encode pilot)

080907_SD_CNV_Slides MBG_CEGS_PMK

/

N

Pseudogene association with SDs by age

Duplicated pseudogenes
associated with SDs,

0.32 0.28 0.21 particularly older ones
) 0.17
0.11 0.1 SDs comprise ~5% of the
human genome but contain
~18% genes, 46% duplicated
pgenes and 22% processed
90-92%  92-94% 94-96% 96-98% 98-99% >99% pgenes
Processed Pseudogenes:
) i serving as repeats for
Processed pseudogenes at SD junctions mediatgilng NApHR
144
Duplicated Segments
—)— ]
40
p<<0.001
No. of Number of
SDs with matching - ——
matching pseudogenes .
pseudogenes expected Matching pseudogenes
at matching at random
junctions

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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ASSOCIATIONS ARE DIFFERENT FOR SDs AND CNVs

CNVs ARE LESS

o ] ASSOCIATED WITH
SD association with repeats SDs THAN THE
GENERAL SD TREND
0.27 0.21 CNV
0.094 0.07 Association
| | | | with SDs
Alu Microsatellite Pseudogenes LINE 0.31
0.11
CNV association with repeats
0.0759 0.0466 0.048
0.0006 | — | >99% SDs*  CNVs
Microsatellite Pseudogenes LINE

--

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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NAHR

NHEJ

Alu
SD
LINE
Microsatellite
Subtelomeres
Fragile sites
CNVs Young SDs Old
High seq-ID (%) Low seq-ID (%)
‘ :
Fixation Aging (~40Mya)
o.1§“ ...................
— LINE/L1
0.141 —— Alu
sD
@ 0.12F
g; 0.1 / /A\
Soo0s | / \\\
Soo0e /| / o
& 0.04 / P / N
//' A
0.02¢ /S \\
ol=—"" ‘ L~ , S~
0 10 20 30 40
Percent divergence

Alu Burst (40 MYA)

AFTER THE ALU BURST, THE
IMPORTANCE OF ALU
ELEMENTS FOR GENOME
REARRANGEMENT
DECLINED RAPIDLY

Vs

* About 40 million years ago
there was a burst in
retrotransposon activity

* The majority of Alu elements
stem from that time

* This, in turn, led to rapid
genome rearrangement via
NAHR

* The resulting SDs, could
create more SDs, but with Alu
activity decaying, their
creation slowed

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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summary:

Looking Back Over the Talk

60-

(c) '09



Outline

Calling Variable Blocks in Genome
(CNVs,SDs)

Calling them with various signal
processing approaches

Analyzing Association of Variable

Blocks with repeats, in relation to
formation mechanisms

61-
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Signal Processing #2:
Identifying Structural Variants in Human

Population
* BreakPtr « PEMer
() Model-based segmentation () Detecting Variants from
using bivariate HMM discordantly placed paired-
. MSB ends

() Simulation to paramaterize

¢ Mean-shift segmentation He
statistical model

approach following grad. of

PDF  ReSeqSim

() Equally applied to aCGH and () Efficiently simulating
depth of coverage of short assembly of a representative
reads variant

() Shows that best
reconstruction has a

combination of long, med.
and short reads



Analysis of Duplication in the Genome:
SVs and SDs

» Large-scale analysis of existing CNVs & SDs in
human genome

« SDs assoc. with Alu, pseudogenes and older SDs

* CNVs assoc. other repeats (microsat.) and not as
much with SDs

« Suggestion: Alu burst 40 MYA triggered much NAHR
rearrangement, then dupl. feed on itself in hotspots
but now dying down and NAHR assoc. with other
repeats and CNVs also from NHEJ
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YK Lam
J Du

J Korbel
L Wang
P Kim |
A Abyzov |
M Snyder | \

X Mu, D Greenbaum,
GenomeTECH.gersteinlab.or A Urban, P Cayting,
9 9 J Rozowsky, R Bjornson,
S Weissman, Z Zhang,
S Balasubramanian
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More Information on this Talk

TITLE: Human Genome Annotation

SUBJECT: GenomeAssembly

DESCRIPTION:

IEEE International Conference on Bioinformatics & Biomedicine
(BIBM-2009), 2009.11.02, 15:45-16:15; [I:BIBM] (Short adaption of
GenomeTechAnnote talk, building on [I:UCSC] focusing just on SV
reconstruction and analysis, includes updates . Takes 29' with
2 questions, or ~24' of talk time with sect.)

(Works equally well on mac or PC. Paper references in the talk were mostly from
Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each
topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic can be looked up at

http://papers.gersteinlab.org/papers/ )

(¢)'09

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at

http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see
http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily
queried from flickr, vizz http: //www. flickr.com/photos/mbgmbg/tags/kwpotppt
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