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2001: Most of the genome is not coding (only ~1.2% exon).
It consists of elements such as repeats, regulatory regions,
non-coding RNAs, origins of replication, pseudogenes,
segmental duplications....What do these elements do? How should

[IHGSC, Nature 4009, 2001]
they be annOtated? [Venter et al. Science 29, 2001]_I

™
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2007 : Pilot results from ENCODE Consortium on

decoding what the bases do

- 1% of Genome (30 Mb in 44 regions)
- Tiling Arrays to assay Transcription & Binding
- Multi-organism sequencing and alignment

- Careful Annotation [IHGSC, Nature 409, 2001] =
- Variation Data [ENCODE Consortium, Nature 447, 2007] 9
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How might we

I_T

annotate a
human text
?
IF YOU WANT TO BE a thorough-
...... soing. watld mavelet. youeed fa...
learn 6,912 ways to say “Where is the :
toilet, please?” That's the number of
"languages known to be spoken by the
peoples of planet Earth, according to
Ethnologue.com.
It you want to be the complete poly-
glot| programmer, you also have quite
Color is a challenge atiead of you, leaming all
: the Ways IS,
Function : = :

Lines are

Similarity

[B Hayes,
Am. Sci.

(Jul.- Aug.

'06)]

§ miwhjﬂmjﬂ\ﬂﬁuw\nmH\\lhﬁ:ﬂml‘m‘, m]i; ‘l,\ngl i E

seessssssascsssssacsses

[ﬁiié'éﬁé 15 i Cf Acatalog maintained
by Bill Kinnersley of the University of

Kansas lists about 2,500 programming

languages. Another survey, compited
by Diarmuid Piggott, puts the total
even higher, at more than 8,500. And
keep in mind that whereas human lan-
guages have had millennia to evolve
and diversify, all the computer languag-
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we've
been inventing one language a week,
on average, ever since Fortran.

For ethnologists, linguistic diversity
is a cultural resource to be nurtured
and preserved, much like biodiversity.
All human languages are valuable; the

Every|programmer
knows there is one

trud programming
language. A new one

every week

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There arelpmgram.mers |:\f my ac-
quaintance who will dispute that last
statement. I expect to hear from them.
They will argue—szealously, ardently,
vehemently—that we have indeed
found the right|programming|lan-
guage, and for me o claim otherwise
is willtul ignorance. The one true lan-
guage may not yet be perfect, they'll
concede, but it’s built on a sound foun-
dation and solves the main problems,
and now we should all work together
to refine and improve it. The catch, of
course, is that each of these friends will
favor a different language. It's Lisp,

he Semicolon Wars |

cide which end of a boiled egg to crack.
This famous tempest in an egg cup was
replayed 250 years later by designers of
computer hardware and communica-
tions protocols. When a block of data is
stored or transmitted, either the least-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if everyone made the same
choice. But that’s not what has hap-
pened, and so quite a lot of hardware
and software is needed just to swap
ends at boundaries between systems.
This modern echo of Swift's Endian
wars was first pointed out by Danny
Cohen of the University of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace.”
The memo, subsequently published
in Computer, was widely read and ad-
mired; the plea for peace was ienored.
-
Fm:-t er femﬁwgew:nrgntten,
think, but never settled by truce CII'I
treaty—focused on the semicolon. In
have to be separated by semicolons. For
example, inx:=0; y:=x+1; =z:=2the
semicolons tell the compiler where one
statement ends and the next begins. C
programs are also peppered with semi-



Overview Of  Determining experimental
— signals for biochemical

AI’]L’[&UOH activity (e.g. transcription)
Process across each base of genome

¢ Development of Sequence (and
Array) Technology
 Normalizing & Scoring Signal,

Correcting Artifacts, Segmenting to
create Small Annotation Blocks

¢ Output of Production Pipelines and
Surveying a Single Type of
Annotation on a Large-scale
e Clustering Small Blocks into Larger

Ones, Surveying
¢ Integrated Analysis Connecting

- T —
1:‘:[ ) E—_, R Different Types of Annotation

* Building networks and beyond

8 Lectures.GersteinLab.org (c) 2007



E N CO D E « Array and NextGen Seq. Experiments

* Mike Snyder & Sherman Weissman

&  Interrogation of small fragments of chromosomes
to determine their function

» Large-scale hybridization to find transcribed

| I l O d regions in unbiased fashion

* TF binding sites (via ChIP-chip)
E N C O D E « CNVs and SDs (from hires-aCGH)
» 1st Pass Computational Annotation
» Classification of Novel Transcribed Regions

» Grouping and Classification of Binding Sites
+ » Characterization of SDs and CNVs

* Integrative Annotation

» Pseudogenes (Zheng et al., GR,GB)
 Inter-relation with Transcription & CNVs

Yale Center for Excellence
iIn Genome Sciences

10 Lectures.GersteinLab.org (c)
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High-Resolution CGH with Oligonucleotide Tiling
Microarrays
HR-CGH

Maskless Array Synthesis —= = T
385,000 oligomers/chip 1 — |
Y

Isothermal oligomers,

45-85 bp I <
Tiling at ~1/100bp non- \ /
repetitive genomic sequence 0000000800
000000000
Detects CNVs at 1 kb 1
resolution o
* ]

Urban et al., 2006 _
Nimblegen

12 Lectures.GersteinLab.org (c)



Representative Signal from aCGH with CNVs & Breakpoints

Chromosome 22 {_

. . ~ —
High Resolution Array ol
Comparative Genomic g ]
Hybridization (aCGH) g _
Calling Copy Number e
Variants (CNVs) between ~ - Patient 99-199
Breakpoints 2 o] W
Nimblegen/MAS Technology G
Isothermal Arrays Covering o
Chromosome 22 . . Patient 97-237
Resolution ~1 kb 5 ] ol o

Urban et al. (2006) PNAS

LCR A BCD
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I Production I

A Starting Point: Noisy Raw Signal from Tiling Arrays (Transcription)

Probe intensity

Johnson et al. (2005) TIG, 21, 93-102.
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Probe position

| | | | I I I II I
NM_103586 H—I
- i | | |
NM_005243.1 %

TRENDS in Genetics

ta 15 ta 16 ta 17 ta 18

Li et al., PLOS one (2007)
I
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12

Representative Signal
from Chip-Seq

STAT1 ChiP-sequencing signal profile map on human chromosome 22 16 uniquely mapped sequence reads and
their directional extension in a tag cluster
| 20000000 | 25000000 | 30000000 | 35000000 | 40000000 | 45000000 | .

identification

1 Overlap

Overlap profile

48650000 | 48700000 1 48750000 |

i
M

15 Lectures.GersteinLab.org (c)
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[Robertson et al., Nat. Meth. ('07); Zhang et al. PLOS Comp. Bio. (in revision, '08)]



Signal Processing:
Normalizing, Measuring &
Correcting for Aspects of

Hybridization)

einLab.org (c)
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Specific & Non-
specific Cross-HyDb.

* Perfect match (PM):
probe binding intended target

» Specific cross-hyb.: probes binding non-PM
targets with a small number of mismatches

* Non-specific cross-hyb.: probes binding
targets with many mismatches, due to
general stickiness of oligos

Non-specific Cross-hyb.

ol



Normalized Intensity

Creation of
Standardized
Datasets for

Quantifying Effect of

Chg. vs. PM

Mismatches

[Seringhaus et al., BMC Genomics (in press)]

Yeast ACT1 Gene

|0

centered

staggered

gggggggggg

Staggered (R2 = 0.998)

Human HBG2 Gene

gggggggg

Number of Mismatches

38 Lectures.GersteinLab.org (c)



Source: Royce, T.E., et al (2007), Bioinformatics, 23, 988-97

Intensity

Observing Non-specific Cross-hyb.
(Probe seguence effects)

Nimblegen 50th Quantile

Avg. intensity of all background
probes with a C at position 4

Avg. intensity of all background

260 -
240 -
220
200 -
1804 G
GG
Caae
Gin :
5.C.C ¢'cTuu e
1 ED = G0 06 {fﬂ_{_‘]ﬂ:{i—f;‘::f-‘[_
140 XTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT;I
E AAA
AAAAAAAAAAAﬁAAAAAAAAAAnAAAAaA

probes with a T at position 33

rrrrrrrrrrrrrerrrererrrrirerrrrrrrrvrel

1 36
Nucleotide position

42 Lectures.GersteinLab.org (c)



Quantile Normalization

Gene expression quantile normalization

& Quantile normalization has proven to be the most effective way to

normalize replicate gene expression arrays.

Density

1.0

0.8

06

0.4

0.2

0.0

Density of PM probe intensities for Spikeln chips

== After Quantile Normalization |

& Distributions that should be
the same are forced to be the
same (dark line).

l
|
|
'
P
|
i
|

T T T T T T I
4 6 8 10 12 14

Source: Bolstad, B.M., et al (2003), Bioinformatics, 19, 185-93.
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lterated Quantile

Probes Probes
-11) BITGC ... TTEA S| 1) APEE ... TT S . .
2 e o < RS E Normalization to
-[AT RTa ... TTAG &, [T CATA ... TTA 5 "‘—S
I | R Correct for
n) [TTT ... TGAT S, | n) TTTT ... TcHI S Non_SDeCifiC
Bin By Nucleotide
| |
pet e |, R — C ross- h V b _

z| | 2|/
E| |/ \ 5| [\l <

L l A ¢ < Adapt Bolstad et al (2003)

[(»] i
Quantile Nimanzaﬁm g approach to tiling arrays
| By Ak e Force distributions with a

g 5 < given nt at each position to

Intensity Intensity be Same

|
= ElaantWiEe AgIng — e Distributions at other
| positions now different so
iterate

€}

Also, robust adaptation of
Naef & Magnasco (2003)

T Royce et al (2007), Bioinformatics, 23, 988-97
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Measuring Specific Cross-Hyb

Start with Cheng et al.
(2005) tiling of human
genome at 5 nt
resolution giving
expression profiles
across various cell
lines

Correlation betw.
probe pairs computed
across cell lines’
expression profiles and
tabulated vs. number
of mismatches

The mean correlation
coefficient was
computed for each
mismatch bin (blue
series).

The number of pairs is
plotted as orange bars.

average correlation coefficient

0.8

0.6

0.4

0.2

0.0

Ty
a5 ]
—— Coefficients
Counts

°
15

T | | T T
5 10 15 20 25

number of mismatches

Source: Royce, T.E., et al (2007), Nucleic Acids Res., 23, 98-97
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Proof of principle test to “exploit” this

Figure from http://www.members.cox.net/amgough/Fanconi-genetics-genetics-primer.htm

e Using Cheng et al. (2005),
predict gene expression levels
(and profiles across tissues) for
genes on part of chr. #6

 ...Based on closest cross-hyb
tiles on part of chr. #7

 Then compare to measured
levels and profile on #6

Source: Royce, T.E., et al (2007), Nucleic Acids Res., 23, 98-97
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Nearest Nbr Search on Virtual Tiling

a virtual tiling

o, [
.
- iy,

- e
- W-..,,D/\Dﬂ.m- ..........

|

|

¢ similarity search

Query Tile

PRORCGTRAGACARTTORRACCOTAE

Probe Sequence
Database

GTCCATHMARALTTOCTGEGACCCC
TCCGACRHFTAGACABGCIGCCAGA
TAGACATAENMCRRTOCATICGGTAC

@

| 25nt |

TAGACGTAGACAATTCATACCCTAA

b microarray hybridizations

ATCCATOOGAAL TTGC TXNKIACCCS I D

TOGUACACCTAGACAUGCOUCOAUA I .

TAGACATACGACANTGCATACIS, .4'.%.1' .

L]
[ [
jD

AACGOT OCGOOCOCGAMATATAMS

L NN I I I S S S S -
d profile assignment from nearest-neighbor
TAGACGTAGACAATTCATACCCTAA
FEEEE FErreerer tierr 1l
T —— TAGACATAGACAATGCATACGGTAC
N EEN
nearest-neighbor search

Royce, T.E., et al (2007), Nucleic Acids Res., 23, 98-97

ZCSC Cn
n
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Adgreement between predicted tile
expression profile and actual one

700
|

» Correlated predicted
profiles with the actual
profiles of gene
expression across cell
lines

* Much more correlation
than expected by
chance (dist. centered
on 0)

200 300 400 500 600
1 l l 1 l

100
l

Source: Royce, T.E., et al (2007), Nucleic Acids Res., 23, 9

correlation coefficient
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Very Strong ROC Curve: Most genes are

accurately detected using

nearest-neighbor features' signals

 |llustrates great
magnitude of cross-hyb.
on hi-density arrays

» High feature density arrays
iInadvertently resurrecting
generic n-mer concept
(van Dam & Quake, 2003)

e Suggests that tiling arrays
could be exploited to create
universal arrays

Gold std. set of known expressed genes. How well do we find.

A set of known positives was defined as the Refseq genes with at
least 75% transfrag coverage. A set of known negatives was

constructed by permuting the sequences in the set of known positives.

For various thresholds, sensitivity and specificity were computed and
then plotted.

C =

0.8

0 _ s
— /
g ,
= s
@ /
@ s
il N ’
= -
/
/
s
’
e P g
= -
’
- ROC curve
= ¥ = = random expeciation
I | I [ |
0.0 0.2 04 0.6 08 1.0
1 - specificity

Royce, T. E. et al. Nucl. Acids Res. 2007 35:e99
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* To get highest resolution on
breakpoints need to smooth &

BreakPtr HMM segment the signal

» BreakPtr: prediction of
breakpoints, dosage and cross-
hybridization using a system
based on Hidden Markov Models

o 0.5
(8]
g 2 < ~
T i N
L -
o
o
T~ -05L—
DNA ACGTGACAC ATAAGCACACCA ATTGCTTGAGGGACCT |TAGGCACAGT TAAC ATGATAAGCACACCA ATTGCTTGAGGTGAC
sequence NOT TO SCALE

Gain
Normal

Korbel*, Urban* et al., PNAS (2007)

i
ectures.GersteinLab.org (c)
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High resolution of tiling arrays allows statistical
Inteqration of nucleotide sequence patterns

ol]

I S >4-fold enrichment of the
i ST KR ——— breakpoints of copy number
o variants near segmental

- duplications (SDs)

— [e.g. Sharp et al., Am. J. Hum.
Genet. 2005; 77:78-88].

trol pa

L H'.Wh" ey e

sity log2-rations [individual vers us co
g e 3 3

experimental ID: 35338
I . i

g [ W S .

| | experimentsl I0: 33241
| Chromosomal | pasition
15000000 23000000/ Z5000000| 30000000| 35002000| 40000000 450
seichan M0 MVMIEID | | A T
[score cutoff '
=1 00,000
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BreakPtr statistically integrates array signal and DNA
sequence signatures
(using a discrete-valued bivariate HMM)

L)

Duplication re————— Normal re——— Deletion

N

Korbel*, Urban* et al., PNAS (2007)
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‘Active’ approach for breakpoint identification: initial scoring
with preliminary model, targeted validation (with sequencing),
retraining, and rescoring

€

88

| o (L

,,,,,,,,,,,, s — ] i —c— 2 | s 3
breakpoints B2 -

NG

@ c

8 £

g | 8._

Breakpoint
validation

[sequencing]

300

parameter
estimation

¥ 1003
[intermediate B]
304
Training data 10 [intermediate A]

Maximum number of parameters per transition state
200

100

Parameter
optimization

Gold standards

T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0
Iogw (number of CNVs available for parameter estimation)

CNV breakpoints sequenced in ~10 cases following BreakPtr analysis;
Median resolution <300 bp

No improvement in accuracy with higher resolution
(9nt tiling)

HMM optimized iteratively
(using Expectation Maximization, EM) KObel*, Urban* et al-, PNAS (2007)
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TARS
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Set of All TARS

Exonic TARs Novel TARs Pseudo TARs

Set of Novel TARs

S1A Filter Novel TARs

Intronic Intergenic ESTs for Unusual Sequence Peculiar TARs
Composition

T BRBRRE

 Proximal’ | Proximal | | Distal | S1B Filter Novel TARs

for Cross-Hybridization Cross-Hyb TARs
! EIRIERIE

DA RT S2 Assign Novel TARs to

Known Genes using Gene Assoc. TARs
Expression Profiles

Classification 47 PR

S3A Cluster into Novel Transcribed

- : : ——— Novel EP Loci
S] [S t e m Loci using Expression Profiles (EP) _

1 EIeI=RIE

S3B Cluster into Novel Transcribed
Loci using Phylogenic Profiles (PP)

overr Lod |
T EIlERIE

Rozowsky et al. Gen. Res. (2007) Singlet or Ambiguous TARs

— Novel PP Loci




Production Integrated

More Developed Annotation: Clustering and

Classifying Blocks of Un-annotated

Transcription into larger units

Assignment of novel TARs to known gene loci

) 7y}
(D) 2 81 o ® L (]
= =
o s, © @ . O
o o
o g 83 . ° . °
D O —
= “ s, @ e ® ®
o) o . :
S g -
z G S e . O .
o

B Exon Assigned Novel TAR

Rozowsky et al. Gen. Res. (2007)

Unassigned Novel TAR
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M Exonic
M Pseudogenes M Exonic TARs
1 . 8 M b B Unannotated Regions M Pseudogene TARs

3,006 |ntr0nIC ¥ Unannotated TARs
145 Kb Proximal

195

ENCODE Regions (30 Mb) Locations of TARs

Of the approx 7,000 Novel TARs
e 0955 are assigned to known genes
« 1,463 are clustered into ~200 Novel Loci

*DART Classification has been experimentally validated
with some small scale experiments

¢ RT-PCR & Sequencing
¢ 18/46 (39%) confirmed by RT-PCR
¢ 4/5 Sequenced Products Map uniquely to correct genomic region

Rozowsky et al. Genome Research (2007)
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Moving Beyond Arrays Next-
Generation Sequencing strategy for
characterizing genomes:

Paired End Mapping
to Find SVs

.GersteinLab.org (c)
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g@ shear into M Me Gircularize Over al I

B - |
DNA of sample fragments fragments of length L I St r a.teq V fo r
genome .
" Analysis of
E‘” :select for marker :cleave randomly N ext G en
|
Marker N:arker E S e q . D at a
| |
Marker Marker to DeteCt
Next generation DNA sequencing, followed by PEMer analysis St
ructural
[1] construct pre-processing [4] outlier-identification l .
[2] read-alignment Variants
[3] optimal paired-end placement End distance < cutoffCi
. - Ry | different prpan
\ [5] outlier-clustering T_'_T,- R clustersizes N ¢ cq
= : A .‘ 5 Sz T
Cluster 1 Insertion
End distance > cutoff Cd
? ‘A_ ke >| g
;:__'“-"'f"-*"’ffj R X 7 7 )
 ——y NIPRL A N g
L‘-I-m__:l Deletion (T
Chister 2 Altered end orientation
A
R il S W Tl

v o) i i oy V 5000
iy - s, - median

e — gt o L Paired-end span [bp]

Deletion Wvarsion [Korbel et al.,

) 07,

[6] cluster-merging [7] Display/storage of final SV set o i%fg;ee(t 2“ )
a Bfﬂk" BB GenomeBiol.

(submitted)]
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Simulation strateqgy

>
. Mark . .
@ shear into Marwer " circularize
- = =1

DNA of sample fragments fragments of length L

genome

Marker select for marker cleave randomly
- . P
Marker H‘x__ Marker
Marl:ler I'I.I'Iarller
—  Simulation
454 sequencing [Korbel et al. — Experiment
GenomeBiol.

(submitted)]
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xeweieta,. RECONStruction efficiency at 5x

GenomeBiol.
(submitted)]

coverage

SV size Single Multi- | Simplified | Multi-cutoff(*) Simplified

cutoff cutoff multi- multi-cutoff(*)

cutoff

1000 3(4) 3(4) 3(4) 3(4) 3(4)
2000 12(13) 23(26) 21(23) 11(13) 6(6)
3000 52(57) 61(68) 61(68) 49(52) 44(46)
4000 84(85) 85(86) 85(86) 80(82) 80(82)
5000 91(93) 91(93) 91(93) 91(93) 91(93)
6000 92(92) 92(92) 92(92) 92(92) 92(92)
10000 88(91) 88(91) 88(91) 88(91) 88(91)
Total 422(435) | 443(460) | 441(457) 414(427) 404(414)
False positives 31(31) 31(31) 26(31) 5(4) 2(1)

* optimal strategy; Multi-cutoff: overlaps 2-8; Simplified multi-cutoff: overlaps 2, 3, and 4 o



[Korbel et al.,

Genometil Reconstruction efficiency at
different coverage

100 1 //”»
90 A —
80 -
g
£ 70 f
.'I_I' 109 A
]
& 60 T b
v 0 A
5 /
2 504 7]
‘E co | —=1 kb
ﬁ 40 A 50 1 -2 kb
I 40 | 3 kb
o 301 =] —4 kb
e 20 4
6 kb
a
10 - v 2w 3x ax 5x 10 kb
E
'u T T T T
5x 10x 15x 20x 25X

Effective coverage
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Building a Database of Variants:
Complexities

Reference Genome

chrX:10000

VX1 (insertion)
VX1:100

VX2 (insertion)
VX2:40

VX2:30,

VX2:30 —» VX1:100 —» chrX:1000

VX3 (deletion)

[Korbel et al.,
GenomeBiol.
(submitted)]

evidence

mechanism

avidence id

current_event

avent_id

/

species

1

_ spacies_id

\

avent_class_i

event_class

coordinate_id

event_coordinale

\/

event_to_source

source

related_events
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Summary of PEM Results

# of sequenced reads

Paired ends uniquely mapped

Fold coverage (on 6Gb)

Predicted Structural Variants*
Indels
Inversion breakpoints

Estimated total variants*

with respect to nchi36,
genome-wide

Korbel et al., 2007 Science

NA15510 (Caucasian?, NA18505 (Yoruba,

female) female)
> 10 M. > 21 M.
> 4.2 M. > 8.6 M.
~ 2.1X ~ 4.3X
478 839
427 758
ol 81
759 902

*at this resoluticgs
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chrl chr2 chr3 chr4 chrs chré chr7 chr8 chr9 chr10 chr11 chri2

Distribution
of SVs

Hotspot on
chromosome 1

0 T L

10
10

region (also a hotspot)

220911 deletion syndrome critical %

chrl3 chri4 chrls chrl6é chrl7 chrl8 chrl9 chr20 chrX

. red deletion; blue insertion; yellow inversion; double line length:
same SV in both individuals.

Korbel et al., 2007 Science
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Analyzing Duplications
INn the Genome

(SDs & CNVS)




080907_SD_CNV_Slides MBG_CEGS_PMK

SEGMENTAL DUPLCATIONS AND COPY NUMBER VARIANTS ARE
RELATED PHENOMENA AND SHOULD HAVE BEEN CREATED BY SIMILAR
MECHANISMS

Intra-species variation Fixed mutations
(differences to other species)

- e—— Fixation [ ] [ ]
- ee— [ ] [ ]
- e— 7 — I
- 0 e—— [ ] [ ]
[ ] [ ] [ ] [ ]
Copy Number Variants (CNV) Segmental Duplications (SD)

e SDs are the fixed forms of CNVs and arise when a CNV reaches fixation in
the population.

* Hence, they should have been created by a similar mechanism

108



Association of SDs
and CNVs with

pseudogenes

CNVs are the raw form of variation
producing duplicated elements

Segmental Duplications (SDs) are fixed
forms of CNVs/SVs. They give rise to
duplicated genes and (eventually) protein
protein families

Thus, we expect, duplicated
pseudogenes (failed duplications) to
occur in SDs.

CNVs and SDs tend to be enriched in
environmental response genes, matching
a patterns previously found for duplicated
pseudogenes

[Korbel et al., COSB (in press, '08)]

CNVs (gene copy-number variation)

ful duplicates (dupli

d genes inacti

d by disruption of coding sequence)




080907_SD_CNV_Slides MBG_CEGS_PMK

SEVERAL DIFFERENT MECHANISMS HAVE BEEN PROPOSED FOR THE
GENESIS OF SDs AND CNVs

4 N e N
A G rl\]l on-aILIIehc * \We can examine breakpoint
B rgcrgfng?noaut;n' sequences to determine the

' mechanism
i Flanking repeat
signature should be
T at the breakpoint
junctions Problem:

* Most large-scale CNV data is of
low resolution (50kb or worse)

Non-homologous-

end-joining
o'['s No repeats. In some e Cannot directly observe repeat
R cases <4bp signatures in the large-scale
o] microhomologies datal!
- / \ J

Source: Bailey and Eichler Nat. Rev. Genetics (2006), Korbel et al. Science (2007) and Kim et al. (submitted) 110
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SOLUTION: PERFORM LARGE SCALE CORRELATION ANALYSIS TO

DETECT REPEAT SIGNATURES OF SDs AND CNVs

-

@

Survey a range of genomic
features

Count the number of
features in each genomic
bin (100kb)

@

Calculate correlations /
enrichments

Genomic
bin
CNV

Alu
L1

e N =

N = O O

o = O o
o N O =

- O O O
o O = Q
- Q = O

| X

Alu

If exact CNV breakpoints are
known, we can calculate the
enrichment of repeat
elements relative to the
genome or relative to the local
environment

...ATCAAGG

CCGGAA...

Exact match

Local environment
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OLDER SDs ARE MUCH MORE LIKELY TO BE FORMED BY ALU ELEMENTS

. N ( N
* The co-localization of Alu
Alu association with SDs by age elements with SDs is highly
significant.
ole 0% 013 g, e Older SDs have a much
0.09 0.08 higher association with Alus

than younger SDs.

* Hence it is likely, that Alu
elements were more active in
mediating NAHR in the past
(consistent with the Alu

90-92%  92-94% 94-96% 96-98% 98-99% >99%

SD association with subtelomeres burst)
0.092 |
0.082 * Younger SDs are more likely
00a (2054 to be localized in

0.028 0.031

subtelomeres (instable
region susceptible to NHEJ)

90-92%  92-94% 94-96% 96-98% 98-99%  >99%
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ANOTHER FUNCTION FOR PSEUDOGENES
MEDIATING NAHR

080907_SD_CNV_Slides MBG_CEGS_PMK

: SERVING AS REPEATS FOR

-

0-32 0.28

0.21
0.17

Processed pseudogene association with SDs by age

011 g1

90-92%  92-94% 94-96% 96-98%

98-99%  >99%

Processed pseudogenes at SD junctions

144

40

p<<0.001

No. of Number of
SDs with matching
matching pseudogenes

pseudogenes expected
at matching at random
junctions

Matching pseudogenes

Duplicated Segments
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FOCUSSING ON SDS: SDS CAN PROPAGATE THEMSELVES, WHICH LEADS
TO A POWER-LAW DISTRIBUTION

Hypothesis Corollary
e A

¢ SDs can mediate NAHR and lead to the
formation of CNVs

SD
» F * CNVs can become fixed and then be SDs

l NAHR

* Such mechanisms (“preferential attachment”) are
1 SD + CNV well studied in physics and should leads a very

skewed (“power-law”) distribution of SDs.

l Fixation

All SDs
T

2 SDs

g o
2 qp'F o
* * * ]
a Q
o
o

“SD selfpropagation”
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FOCUSSING ON SDS: SDs COLOCALIZE WITH EACH OTHER

080907_SD_CNV_Slides MBG_CEGS_PMK

Hypothesis Corollary
e
sSD ¢ SDs can mediate NAHR and lead to the
formation of CNVs
» F e CNVs can become fixed and then be SDs
l NAHR
* SDs of similar age should co-localize better with
1 SD + CNV each other:
l Fixation
2 SDS 045
“ SD Self-propag ation” 90-92 92-94 94-96 96-98 95-99 99-100 "
\_
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THE ONE WITH SDs
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THE ASSOCIATION OF SDs WITH ALU ELEMENTS IS COMPLEMENTARY TO

p
* SDs that lie in Alu rich
regions are less likely to be
Correlation of young SDs (>99%) with older associated with other SDs
SDs
* Hence, there is a certain
0.68 complementarity to SD-
mediated NAHR with Alu-
metiated NAHR
0.3
Alu poor Alu rich
regions regions
-
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CNVs ARE LESS ASSOCIATED WITH SDs THAN THE GENERAL SD TREND

Association
with SDs
0.31
0.11
>9904 SDs* CNVs
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ASSOCIATIONS ARE DIFFERENT FOR SDs AND CNVs

SD association with repeats

0.27 0.21
0.094 0.07

Microsatellite Pseudogenes LINE

--

CNV association with repeats

0.0739 0.0466 0.048

0.0006 | ] |

Microsatellite Pseudogenes LINE

--

CNV association with repeats
after correcting for SD content

0.054 0.046
0.012

Alu Microsatellite Pseudogenes LINE
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ANALYZING SEQUENCED BREAKPOINTS CONFIRMS THE RESULTS FROM

THE COARSE GRAINED ANALYSIS

080907_SD_CNV_Slides MBG_CEGS_PMK

Global Local

Repeat Type Frequency enrichment p-value enrichment p-value

Alu 0.09 0.94 3.24E-01 1.13 1.74E-01
SD 0.41 2.57 2.14E-07 1.17 2.64E-01
L1 0.24 1.48 1.03E-07 1.12 7.16E-02
L2 0.01 0.47 1.72E-02 0.52 2.31E-02
Microsatellite 0.03 3.91 6.74E-11 3.11 2.99E-07
LTR 0.09 1.14 1.71E-01 0.89 1.97E-01
PPgene 0.01 2.08 9.55E-02 1.66 1.98E-01
GC 0.39 0.96 7.24E-03 0.97 3.00E-02

Exact match

Local environment

...ATCAAGG|CCGGAA...
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AFTER THE ALU BURST, THE IMPORTANCE OF ALU ELEMENTS FOR
GENOME REARRANGEMENT DECLINED RAPIDLY

-
Alu Burst * About 40 million years ago
there was a burst in
retrotransposon activity
0.16 ! o
~ LINEAL * The majority of Alu elements
0.14] v Alu .
<D stem from that time

@ 0.12
3
w 0.1
§008 * This, in turn, led to rapid
5 genome rearrangement via
5 0.06 NAHR
E 0.04r

0.02] .

_ * The resulting SDs, could
% 10 2b 30 40 create more SDs, but with
Percent divergence Alu activity decaying, their
Young SDs Old SDs creation slowed
o
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THE MECHANISM DRIVING LARGE SCALE GENOME REARRANGEMENT
UNDERWENT A MARKED SHIFT IN THE LAST 40 MYA

NAHR

Alu
SD

LINE
Microsatellite

NHEJ

Subtelomeres

Fragile sites
CNVs Young SDs old
High seq-ID (%) Low seq-ID (%)

A

Fixation

&
<

Aging (~40Mya)
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METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE
e _ _ N
Hapmap/Perlegen Database of Genomic Variants
International
Map to ENSEMBL genes
CNVs + SDs
Ensembl Genes
ENSGO00XXXX:
rsSNPOOXXX Result
CNV_XXX
DN/DS XXXX ( h
Recombination rate
nt t * Dataset of network
nteractome " A position / parameters
viap to P roteins mkt € (e.g. degree centrality
interaction networ or betweenness
> centrality) in
relationship to SNPs,
é _ CNV’s, recombination
~30000 interactions rates and positive
from HPRD and selection tests
Y2H screens
N ) .

* From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)
Source: PMK 122
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ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

Intra-species variation Fixed mutations
(differences to other species)

I ) .
Positive ®
Single- N Selection ()
basepair ——— — — )
S o
@ O ®
Single-Nucleotide Polymorphisms Fixed Differences
- — Positive ] ]
Structural - ee— Selection [ ] ]
variation  m e—— > = I
- e—— ] ]
] ] ] ]
Copy Number Variants Segmental Duplications

[Often but not always measured by dN/dS]

Source: PMK 123
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CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

Centrality vs. SD occurrence

~J

-Spearman Rank P-value: 3.5e-04

)]
o

Number of Overlapping SDs
(&)

40

30

2@no  ©

| — ORI OGO O 00 0o o oo ! e

0 0.5 1 1.5 2 2.5 3 3.5
Betweenness Centrality x 10

B 2

Network periphery Network center

4

6

Reasoning

Ve

* This result also confirms our initial
hypothesis — peripheral nodes tend
to lie in regions rich in SDs.

* Since segmental duplications are a
different mechanism of ongoing
evolution, the less constrained
peripheral proteins are enriched in
them.

* Note that despite the small size of
our dataset for known SD’s we get
significant correlations. It is to be
expected that the correlations will
get clearer as more data emerges*

-

* Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome
Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)
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SELECTION

Degree vs. Positive Selection

5

4.5:. Spearman Rank P-value: 1.2e-06

N

w
3]
Tege

w
T
[

—
- N
235)

Positive Selection Test Likelihood Ratio
N
(8) ]

o
(3]

-l & & & & |

o

05 1 1. 2
Betweenness Centrality

o

2.5

x 10°

Network periphery

Network center

0601004_Groupmeeting_PMK

CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE

[ ] Hubs

Reasoning

Ve

-

* Peripheral genes are likely to under
positive selection, whereas hubs
aren’t

* This is likely due to the following
reasons:

— Hubs have stronger structural
constraints, the network periphery
doesn’t

— Most recently evolved functions
(e.g. “environmental interaction
genes” such as sensory
perception genes etc.) would
probably lie in the network
periphery

* Effect is independent of any bias
due to gene expression differences

* With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection
(McDonald Kreitmann and LDD) corroborate this result.
Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)
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POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK

PERIPHERY

Positive selection in the human interactome

0601004_Groupmeeting_PMK

High likelihood of
positive selection

Lower likelihood of
positive selection

Not under positive
selection

No data about
positive selection

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)
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Inteqrative
Analyses:

Annotating
Pseudogenes and
relating them to
functional signal
and measures of
conservation

lllustration from Gerstein & Zheng (2006). Sci Am.
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Pseudogenes are among the most
interesting intergenic elements

 Formal Properties of Pseudogenes (VYG)
¢ Inheritable
¢ Homologous to a functioning element
¢ Non-functional*
* No selection pressure so free to accumulate mutations
— Frameshifts & stops
— Small Indels
— Inserted repeats (LINE/Alu)
 What does this mean? no transcription, no translation?...

Lectures.GersteinLab.org (c)

[Mighell et al. FEBS Letts, 2000] &
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ldentifiable Features of a

Pseudogene (yRPL21)

Synonymous
Premature stop codon mutation
AA N V R I E H I K H £ I B R I N RS IS i R

RPLZ2] AATGTGC|GTATTGAGCACAATAAGCACTCTAAGACGCGAGATAGCTTCCT|GAAACGTGTGA

G
WRPL21 AATGTEC

AAAAACATGA

G
ATATTGAGCACATTAAGCACTCCAAGACGTGAGATAACTCCCT

AA N V | H I E H I K H ol HEN B R D N F L K S S
Nonsynonymous
mutation
O
(@]
=
Gross deletion
K E N D 0 K K K E A K E K G T w v 0 L K R 0 P A P P R E A H F Vv R
AMGGAAAATGATCAGAAAAAGAAAGAAGCCAAAGAGAAAGGTACCTGGGTTCAACTAAAGCGCCAGCCTGCTCCACCCAGAGAAGCACA CTTTGTGAGA
IAGGAAAnTGﬂTCAGnAnAAG ——————————————— |.ﬂAA GCCAAAGAGTTCAACTGAAGTGCCAGCCTGCTCTACCAAGAGAAGTCC CAACTTTGTGAGA
K E N D 0 K K K 0 R v 0 L K C 0 P A L B R E v E v R

Gerstein & Zheng. Sci Am 295: 48

Base insertion and

Base deletion and
frameshift

frameshift

129 Le

(2006).



Distribution of Human

Pseudogenes (for RPL21)

across the chromosomes

[— e (T

g guu RPL21 gene

I]

I]“ii

T il
1 2 3 4 5 6 ? 8 9 10 11 12 13 14 15 16 17 18 19 20 2

Human Chromosome

Gerstein & Zheng. Sci Am 295: 48 (2006).

.GersteinLab.org (c)
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Two Major Genomic Remodeling
Processes Give Rise to Distinct

Types of Pseudogenes

Duplication and mutation

Duplicated pseudogene
Promoter Exon Intron P Ip E
\ | | | S IR
GENOMIC | L J_ S 9. of o I R o)
DNA _ m » R ., P I T VR W
I I ! | | |
Gene Processed pseudogene

Transcription

Reverse transcription

RNA transcript and mutation
I
I

Processing

mRNA
Gerstein & Zheng. Sci Am 295: 48 (2006).
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Why Study Pseudogenes?

» Important for Doing Accurate Gene Annotation
= Abundant: > 8000 retropseudogenes in human
= High sequence similarity with genes
= 25%in C. elegans ? [Mounsay, Genome Research, 2002]

132 Lectures.GersteinLab.org (c)



Why Study Pseudogenes?

"Interfere” with functional genes
= Cross-hybridation in microarray and PCR (Cytokeratin 19, Int. J. Cancer 1999)
= Very rarely this gives some pseudogenes regulatory roles

In mouse, a pseudogene up-regulates gene expression of
Makorinl by binding to a transcriptional repressor or an RNA-
digesting enzyme [Hirotsune et al. Nature 423 2003]

133 Lectures.GersteinLab.org (c)



Why Study Pseudogenes?

» YG are “genomic fossils”
= Study the evolution of genes and genomes
= Measure mutation/insertion rates

134 Lectures.GersteinLab.org (c)



Full Length Protein Queries
(simulate processed
Ygenes)

DNA Sequences of Exons +
50 bp Overhang on Either
Sife[=]

Queries of Exon Peptides
(simulate duplicated

eX| n q Ygenes)

I "

T N

Processed

1

Merge & Clusté[

Resolve Paternity & Extend
ll Clusters by Referring to the
 Query Proteins

A4

= Dupglicated

Assemble Pseudo-exons by

Referring to the Intron-Exon
Structure of Query Genes

TEASTY

Dvn

Prog. | R

v Re-Alignment

Classif

Zheng & Gerstein. GenomeBiology (2006).
Zhang et al. Bioinformatics (2006)

res.GersteinLab.org (c)
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Integrating heterogeneous,
Dvnamically Changing
Annotation

¢ Changing sequences, gene

predictions, repeats

Track (slightly) changing
objects across genome
builds

¢ Versioning and exact temporal
reconstructability

Fixed Sets of Pseudogenes

¢ Corresponding to particular
types of analyses or papers

Generalizable Class
Structure

¢ fragments, alignments,
collections, pseudogenes

EAV

O Flexible Annotation for
extended characteristics

Interface with Uniprot &

UCSC
DB

Karro et al., NAR (2007)

I E N
| T T TR
ImBS japiasn  up L]
I METINIT B § 1
i HEI
RSl

Pseudogene.org

Eukaryote Database

CHICKEN
Tax 10: 8031 Build: 2
Search: Pseudogenes, Sels

Pseudogenes: 4179

Download Flatfile: [gtf] [ed] [by chr]

DOG
Tax ID: 9615 Build: 1

Soornhy: Doeoidnmanoes Sofc

Pseudogenes: 2802

CHIMP

Tax |1D: 9588 By
Search: Pseudogened
Download Flatfile: [gif]

FLY
Tax ID: 7227 BY

Coorrb- Dooiinnmormo

S

Pseudogene Sets

Search Name Notes and Links

Reference

Current
Build

Current|Original |Original

Size | Build | Size |Co%Mioad

7868
pseudogenes
found by Zhaolei
Zhang ...

1 |Build 28 pseudogenes Zhang et. al.

38

6186 28 7868

lotr] [ext]

13979
pseudogenes
were identified by
T -

Pseudogene.org pipeline
output

www.pseudogene.org

36

13111 34 13979

fotr] [ext]

522 pseudogenes
were identified on|Zheng et. al.
chrom...

3 |Human chr. 22

201 transcri d:pse

fotr] fext]

\/

dogene.org:8606. PFSet
4 |Transcribed Pseudogenes | pseudoger|522 pseudogenes were identified on hB 200 7.} 201 | [gtf] [txt]
were identi|chromosome 22 by Deyou Zheng based
19529 |on human build 34. Later this set was
pseudoger|mapped to the current human build 35,
5 |Bork Pseudogenes were identific| 509 pseudagenes remaining. Original 6 | 17483 | 34 | 19629 | [otr] [1x]
D T... |Analysis is accessible by clicking the
5791 proces| link.
§__|Hoppsigen pseudogenes | _pseudogenes _[Khelifi et al. | 36 | 4080 | 34 | 5701 | [ot] [oxt]
——
Links\ Pseudogene Accession Number (Isid format) \ MName Chromosome| Start Stop Slrand\ Type Protein
@@ |urn:isid:pseudogene.org:9606.Pseudogene:48953 | ENSP00000321017. Human. chr22. mi 22 ENSP000D
[ - 2 | ENSP00000347298. Human.chr22.mb14 22 14464249||14464833| - | Processed | ENSP000O]
B e i e e ——
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5 Methods of Assignment

e 4 automatic pipelines
O retroFinder+pseudoFinder (UCSC), PseudoPipe (Yale), GIS

¢ Comparing protein or transcript v genomic DNA,
filtering, application of rules

« HAVANA manual

 What is a pseudogene?
¢ Different criteria

e Conservative approach here

¢ Can't overlap gene annotation
¢ Need to have a protein alignment
¢ 201 pseudogenes vs ~400 genes

Zheng et al. (2007) Gen. Res.
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suolbeyd 300DN3

Number of Genes/Pseudogenes

0 5 10 15 20 25 30 35 A0 45 50 OV e r aI I
Results:

Regional
Distribution

004
005
006 ==
007
008 ==
009
010
011
012
013 |
4 ==

12 201 pseudogenes
;_

SH21d |enuep

114 /7 non-processed
124 processed

122 |
123 =
131 ——
132
133 —

=
212 ==
213
221 p—
222 B—
223 g——
231
232 p———m—
238 == S——
311
312
313

=
-

322

323 e browser
p—

324 | Processed Pseudogene | ] +
331 Non-Processed Pseudogene EXX3

T
35 = Gene —— pseudogene.org/ENCODE

334

SHOI4 Wopuey

Zheng et al. (2007) Gen. Res.
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Using phastOdd value to examine
neutral evolution of pseudogenes

most good
candidates
for
studying
mutational
processes

frequency

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Gene _l

NPS ———
1 PS Ez
a few

Al § non-proc.

H Iﬂ 1 ‘ | I yG under

- = -1 A i B N P constraint
4 0 2 4 6

phastOdd value

Zheng et al. (2007) Gen. Res.
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representative pseudogenes drawn from 201 total

A B C D E F Historx

human - [X] (X X X Of
cimp - [X] X m B e
e co- = Pseudogene
macaque - m X F] .
et - = = = Preservation
galago - O X m N
- O O E < =
mouse = [X] (O || n
aot- O O O WM X B Based on
cow- O O O X O B alignment from
sog- X O O W X [X ENCODE MSA
tat - X O O X B B group
shrew - [/ij ’L_) ::) X . .
E;r:;:::; : % Lj :\j: % = Zheng et al. (2007) Gen. Res.
eec- O O O W X X .
mnodeiphis - O O O W X N Absent { )
papis - O O O H X M
chicken - ) O 9 B ) B Present with Disablement N
s - O O O O O KX '
tetraodon - O O X B O X Present without Disablement .
zebrafish - O O O B B
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Seguence Decay of Pseudogenes

tely Neutral
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Sequence Decay of Pseudogenes Relative to their

Nucleotide Identity

0.99
0.98
0.97
0.96

0.9

0.85

0.8
0.8

0.75
0.7
0.65

0.8
0.75
0.7

Immediate Genomic Context
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e — | —s / B e gy S————
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chimp . NPS
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Zheng et al. (2007) Gen. Res.
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Zheng et al. (2007) Gen. Res.

In Integrative
fashion to
different types
of Annotation

e Single Ex. of
Pseudogene
Intersecting with
Transcriptional
and Regulatory
Evidence

« Are integrated
experiments
comparable -- i.es
done on
consistent cell
lines, on same
coordinate sys.,
&C.
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Intersection of Pseudogenes with
Transcriptional Evidence

TAR/ CAGE DiTag RACEfrag | EST/
transfrag MRNA
TAR/ 105" 8 2 o) 14
transfrag
CAGE 8 1 0 1
DiTag 2 0 0
RACEfrag 14 5
EST/ 21
mRNA ] [] = [ | [ ]

Excluding TARs (due to cross-hyb issues)
Targeted RACE expts to 160 pseudogenes, gives 14

Total Evidence from Sequencing is 38 of 201 (with 5 having cryptic promotors)

Zheng et al. (2007) Gen. Res.
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Ka/Ks

Integrated

Integrating Transcriptional Evidence with

Gene Annotation and Sequence Constraints

'12 T ] T T I

08 . ® ®

*

ke,
02 = " e
=

s
.’@I’F

Processed pseudogene

Non-processed pseudogene

Gene
Transcribed O

Y
Avg. Integration
over many
instances

 No Greater

» Tendency for
Transcribed
Pseudogenes
i to be under
ey Selective
Constraint

Need a way of
easily defining
degree of
constraint on

SNP density

Measurement of Short-time variation (pN+pS)

sequence (not
So easy for
non-coding)

Zheng et al. (2007) Gen. Res.
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Conclusion:
The distinction

between gene and
non-gene Is

becoming less
clearcut



What are Active Pseudogenes
Doing? Potential for Gene
Reqgulation via endo-siRNA

* Recent Discovery in Mouse and Fly

Czech, B. et al. Nature 453, 798-802 (2008).
Ghildiyal, M. et al. Science 320, 1077-1081 (2008).
Kawamura, Y. et al. Nature 453, 793-797 (2008).
Okamura, K. et al. Nature 453, 803-806 (2008).
Tam, O. H. et al. Nature 453, 534-538 (2008).
Watanabe, T. et al. Nature 453, 539-543 (2008).
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How could a pseudogene be

Involved in RNAI?

21-nuclectide
siRNA
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Very Speculatively, Papers Blur

Boundaries betw. SIRNAs and miRNAS

Small-RNA ) MM ) T & T
guide 22-nt 21-nt 24-30-nt

Argonaute
effector within
RISC

Cellular
role
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Genes & Pseudogenes

(b) Dead Pseudogene

Zhenq & Gerstein, TIG (2007) [IPromoter |Exon | ] Pseudo-Exon:l RNA % Mutations disrupting protein coding J




Zheng & Gerstein, TIG (2007)

Transcribed
pseudogene regulates
parent (NOS)

[ IPromoter |Exon | ] Pseudo-Exon:l RNA % Mutations disrupting protein coding J




Genes or Pseudo

A pseudogene whose RNAs can
form a RNA-RNA duplex with
mRNAs from its parental gene
(e.g., NOS pseudogene)

Zheng & Gerstein, TIG (2007)

(b) Dead Pseudogene

A processed pseudogene
without disableme:nt

A duplicated pseudogene
with a truncated transcript

A psi:udogene whose decayed A pseudogene whose RNAs can
DNA contributes to part(s) of a form a chimeric transcript with
new borned ncRNA gene mRNAs from a functional gene
(e.g. Xist gene)

[ IPromoter |Exon | ] Pseudo-Exon |:| RNA % Mutations disrupting protein coding

)




Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing
reveals extensive transcription in the human genome

= : . *: unannotated spliced
rl i i : i ——H | transcript products
detected r #‘—l_ ~N
H = sequences(+) E
H— I *
11 4 }
H— *}
i’_l ; refSeq (+) ] DRG1/| Pprimer regions R
| | +
30,120,000 30,130,000 qi2.2 R
refSeq (-) detected
( sequences (1) * )
k T
detected sequences(-) 11 | ) | detected sequences (T) “H ! )
5I | | I i §
Ve ’
HEll :
I I I I I - FBXO7 refSeq (+) 5 TIMPa
I I II I I I 31,200,000 31,300,000 31,400,005 31,500,000 31,600,000 31,700,000
primer regions e
[ | '] ] 2
refSeq T 1B ’ SYN3 # . L5
() Wi ¥ # i —
detected T ' " . .
. sequences (+) I . . N 'I )
x ¥ 1
L & l | M
H:\-
-+
I H $
detected p - i 1]
etected sequences (-
\ sequences (-) qu ¢ I! } 3+

Source: Wu , Du, et al. (2007) Genome Biology
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DNA Sequence

U

) Gene 1 Gene 2 %Gl‘i;/l G 4 D—S
& lllll Forward Strand Transcripts
B-HH
B 04111
B Hi-2
B e -1
11
[ -+
H-HE
.
b+
Reverse Strand Transcripts
* I
FH-
L e Us
B) DNA Sequence
s—e (ool XY B—of— H -
Gene 2 Gene 1
Transcripts for Gene 1
e I 148
o B+
I Annotated Exons I..D.-_II.
[] NovelTARs 18
® Regulatory Sequence for Gene 1 II.I. 3

Biological
complexity
revealed by
ENCODE:
Long Interleaved
Transcripts and
Distributed
Requlation

What is a Gene?
and What Is not a

Gene?

[Gerstein et al.
Genome Res. 2007,
17: 669-681]
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Gerstein et al. Genome Res. 2007; 17: 669-681

Proposed Re-definition of a Gene: “Gene is a union of genomic seguences

encoding a coherent set of potentially overlapping functional products.”

DNA{ gj—|AI—-IBI:cI Do | IEI—g:
Primary s [lAN—EN—cil ¢ sl o] (E 3
. <
transcripts s I ST o
.
S "‘ 3 5' - _________ _EIS.
Sp“ced 5' - ---------- IECH 3 5 - """""""""""" E. 3
transcripts [B---fc I+
5 I - - - - - - -- -~ ------------------sosoooe R
~
'
Functional ) U ) &)
products @@
ncRNASHDDDR-------—-—-——-—-——-—-—-——-——-——-——-——--——-—"-"-—---"—"-"-"-— I
-
#1 "ees H2 om0 #3 enm
Dl Bl En 2 R W
Genes . o Tt
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Overview Of  Doing large-scale similarity

comparison, looking for repeated or

Annotation deleted regions
e Determining experimental
M signals for biochemical

activity (e.g. transcription)
across each base of genome

¢ Development of Sequence (and
Array) Technology

 Normalizing & Scoring Signal,
Correcting Artifacts, Segmenting to
create Small Annotation Blocks

O 4 =i v &, | ¢ Output of Production Pipelines and
Surveying a Single Type of
Annotation on a Large-scale

t;L[ ] E_' ] » Clustering Small Blocks into Larger
| f; ! Ones, Surveying
S N T T ) ¢ Integrated Analysis Connecting
B g ' f » Different Types of Annotation
M v % - Building networks and beyond
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Processing the Raw Experimental Signal,
developing scoring technoloqgy

e Simulating to correct for non-uniform coverage of the
genome in Chip-seq experiments and using this to better
score the experiments
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Large-scale analysis of a single type of
"sighal" :
First-Pass Annotation Clustering and
Characterizing Novel Transcribed Regions
and Groups of Binding Sites

 DART classification of TARS
¢ 1300 TARs in ~200 novel ENCODE loci
» based on expression and phylogenetic clustering
» Deserts and Forests of Binding Activity

¢ on ~50kb scale

¢ Biplot gives broad separation of seq. specific and non-specific factors
and associated genomic bins
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Integrative Annotation:
Relating Pseudogenes to Conservation &
Transcription

« Annotation: Pseudogene * Pseudogene Activity
Assignment
¢ Consensus annotation from

automatic pipelines & manual
curation gives 201 in ENCODE
o ~2/3 processed are primate
specific

¢ Evidence for selection operating
on a few but most neutral

¢ >20% appear to be transcribed
(38/201)

O No obvious selection on
transcribed ones
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