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(See Last Slide for References  
& More Info.) 
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The problem: Grappling with  
Function on a Genome Scale? 

~1,200 protein-coding genes 
(~950 pseudogenes) 

[Hillier et al, Nature, 424, 157]  

sequence of human chr. 7 
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Traditional single 
molecule way to integrate 

evidence & describe 
function 

Descriptive Name: 
Elongation Factor 2 

Summary sentence  
describing function: 

This protein promotes the 
GTP-dependent 

translocation of the 
nascent protein chain from 
the A-site to the P-site of 

the ribosome.  

EF2_YEAST 

Lots of references  
to papers 
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Some obvious issues in scaling single 
molecule definition to a genomic scale 

•  Fundamental complexities 
-  Role Conflation:  

molecular, cellular, phenotypic 

-  Often >2 proteins/function  
-  Also Multi-functionality:  

2 functions/protein 
•  phenotypically –  e.g. Pleiotropic effects such as 

human PKU being involved in retardation & 
eczema 

•  cellular role – e.g. Depending on the molecule it 
interacts with HSP70 is involved with protein 
folding, translocation of proteins into mitochondia, 
biogenesis of certain subunits.. 

[HSP from Craig et al, Rev Physiol Biochem Pharmacol (2006) 156:1 ; Terms from Seringhaus et al. GenomeBiology (2008)] 
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Some obvious issues in scaling single 
molecule definition to a genomic scale 

•  Fundamental complexities 
-  Role Conflation:  

molecular, cellular, phenotypic 

-  Often >2 proteins/function  
-  Also Multi-functionality:  

2 functions/protein 
•  phenotypically –  e.g. Pleiotropic effects such as 

human PKU being involved in retardation & 
eczema 

•  cellular role – e.g. Depending on the molecule it 
interacts with HSP70 is involved with protein 
folding, translocation of proteins into mitochondia, 
biogenesis of certain subunits.. 

•  Fun terms… but do they scale?.... 
-  Starry night (P Adler, ’94) 

[HSP from Craig et al, Rev Physiol Biochem Pharmacol (2006) 156:1 ; Terms from Seringhaus et al. GenomeBiology (2008)] 
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Hierarchies & DAGs of  
controlled-vocab terms 
but still have issues...  

[Seringhaus & Gerstein, Am. Sci. '08] 

GO (Ashburner et al.) MIPS (Mewes et al.) 
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Networks (Old & New) 

[Seringhaus & Gerstein, Am. Sci. '08] 

Classical KEGG pathway Same Genes in High-throughput Network 
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Networks occupy a midway point in 
terms of level of understanding 

1D: Complete  
Genetic Partslist 

~2D: Bio-molecular 
Network 

 Wiring Diagram 

3D and 4D:  
Detailed structural understanding 

of cellular machinery 
(e.g. ribosome in different 

functional states) 

[Jeong et al. Nature, 41:411] [Fleischmann et al., Science, 269 :496] [Chiu et al. Trends in Cell Biol, 16:144] 
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Networks as a universal language 

Disease 
Spread 

[Krebs] 

Protein 
Interactions 

[Barabasi] Social Network 

Food Web 

Neural Network 
[Cajal] 

Electronic 
Circuit 

Internet 
[Burch & Cheswick] 
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Key comparisons 

• Electronic circuits share similar design 
principles compared to biological networks 
(synthetic biology) 

• Social Systems provide useful intuition 
• Biological systems and computer operating 

systems (The genome has often been 
called the OS for a living organism)  
◊ Execute information processing tasks 
◊ adaptive systems shaped by changing 

environments (Natural vs man-made systems)  
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Using the 
position in 

networks to 
describe 
function 

[NY Times, 2-Oct-05, 9-Dec-08] 

Guilt by association 

Finding the 
causal regulator 
(the "Blame 
Game") 
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Combining networks forms an ideal way 
of integrating diverse information 

Metabolic 
pathway 

Transcriptional 
regulatory 
network 

Physical protein-
protein Interaction 

Co-expression 
Relationship 

Part of the  
TCA cycle 

Genetic interaction 
(synthetic lethal) 
Signaling pathways 
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Outline: Molecular 
Networks •  Why Networks? 

•  Generating Networks 

- Scanning for Targets of Modular 
Domains 

- Propagating Known Information 
(yeast ppi) 

•  Central Network Points 
- Hubs & Bottlenecks  

(yeast ppi & reg. net) 

•  Networks & Variation  
(human ppi & miRNA-targ. net) 

•  Social Network Comparisons 
(reg. net. in many organisms) 

-  in rel. to social hierarchy  

-  scaling in rel. to partnerships 

•  Computer OS Comparisons 
(E. coli reg. net) 
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Example: yeast PPI 
network 

Actual size: 
◊  ~6,000 nodes 
→  Computational cost: ~18M pairs 

◊  Estimated ~15,000 edges 
 → Sparseness: 0.08% of all pairs (Yu et al., 
2008) 

Known interactions: 
◊  Small-scale experiments: accurate but few 
→  Overfitting: ~5,000 in BioGRID, involving 
~2,300 proteins 

◊  Large-scale experiments: abundant but 
noisy 
 → Noise: false +ve/-ve for yeast two-hybrid 
data up to 

 45% and 90% (Huang et al., 2007)
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Different Types of Molecular Networks 

Protein-protein Interaction networks 

[Toenjes, et al, Mol. BioSyst. (2008); 
Jeong et al, Nature (2001); [Horak, et al, 
Genes & Development, 16:3017-3033; 
DeRisi, Iyer, and Brown, Science, 
278:680-686] 

TF-target-gene Regulatory networks 

Undirected 

Directed 

Metabolic pathway networks miRNA-target networks 
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Generating 
Networks 
How do we construct large 

molecular networks.  
From connecting sequence 

patterns for modular interaction 
domains to matching sequences 
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Proteome 
with pre-computed features 

Profiling	
  for	
  
interac/on	
  
specificity	
  

Scanning	
  for	
  target	
  candidates	
  

Predic/ng	
  interac/on	
  targets	
  

Reconstruc/ng	
  networks/pathways	
  

Modular protein domains 
interact with peptides 
containing a specific motif 

Search for these 
sequences in a target 
proteome to find potential 
interactions 

Motips 
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Determining the 
interaction 
specificity  

•  Experimental methods 
to identify domain 
interaction specificity 
◊  phage display 

experiment (e.g. SH3)  

◊  the peptide library 
screen (e.g. S/T Kinase) 

•  Scan the target 
proteome with 
normalized PWMs  

[Lam et al., BMC Bioinfo. (‘10, press)] 
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Integrating structural 
and conservation 

features 

• Calculate features for 
potential interaction 
sites: 
◊ Surface accessibility 

◊ Protein disorder 

◊ Sequence Conservation 

•  Build a naïve Bayes 
classifier based on a 
validated training set to 
integrate the features 

[Lam et al., BMC Bioinfo. (‘10, press)] 

Prk1 Kinase 
AUC: 
79% vs 72% 
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Generating Networks #2 
How do we construct large molecular networks? 

From extrapolating correlations between functional genomics data with fairly 
small sets of known interactions, making best use of the known training data. 
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Training sets 

1 2 

4 3 

Known interactions 

Known non-interactions 

Unknown 

1 2 3 4 

1 0	
 1	
 ?	
 1	


2 1	
 ?	
 0	
 ?	


3 ?	
 0	
 ?	
 ?	


4 1	
 ?	
 ?	
 ?	
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Network prediction: features 

•  Example 1: gene expression 

x1 = (0.2, 2.4, 1.5, …) 
x2 = (0.8, 2.2, 1.5, …) 
x3 = (4.3, 0.1, 7.5, …) 
… 
sim(x1, x2) = 0.62 
sim(x1, x3) = -0.58 
… 

Gasch et al., 2000


1 2 

4 3 

Similarity scale: 

1 -1 
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Network prediction: features 

•  Example 2: sub-cellular localization 

x1 = (1, 1, 0, 0, …) 
x2 = (1, 1, 1, 0, …) 
x3 = (1, 0, 1, 0, …) 
… 
sim(x1, x2) = 0.81 
sim(x1, x3) = 0.12 
… 

1 2 

4 3 

Similarity scale: 

1 -1 

http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif 
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Data integration & Similarity Matrix 

1 2 

4 3 

1 2 

4 3 

1 2 

4 3 

1	
 2	
 3	
 4	


1	
 1.00	
 0.57	
 0.55	
 0.40	


2	
 0.57	
 1.00	
 0.66	
 0.89	


3	
 0.55	
 0.66	
 1.00	
 0.79	


4	
 0.40	
 0.89	
 0.79	
 1.00	


1 2 

4 3 
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Learning methods 
An endless list: 
•  Docking (e.g. Schoichet and Kuntz 1991) 

•  Evolutionary (e.g. Ramani and Marcotte, 2003) 
•  Topological (e.g. Yu et al., 2006) 

•  Bayesian (e.g. Jansen et al., 2003) 

•  Kernel methods 

◊  Global modeling: 

•  em (Tsuda et al., 2003) 

•  kCCA (Yamanishi et al., 2004) 

•  kML (Vert and Yamanishi, 2005) 

•  Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005) 
◊  Local modeling: 

•  Local modeling (Bleakley et al., 2007) 

Let’s compare in a public challenge!  
(DREAM: Dialogue for Reverse Engineering Assessment and Methods) 
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Our work: efficiently propagating 
known information 

Training set expansion 
•  Motivation: lack of training examples 

•  Expand training sets horizontally 

Multi-level learning 
•  Motivation: hierarchical nature of 

interaction 

•  Expand training sets vertically 

DREAM3 in silico regulatory network 
reconstruction challenge 

Local model 1 Local model 2 

PPI predictions 

DDI predictions 

RRI predictions 
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Protein interaction 

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)	


Protein-level features for interaction prediction: functional genomic information 

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 



Do not reproduce without permission 

Domain interaction 

Pfam domains: PF00107 (inner) and PF08240 (outer)


Domain-level features for interaction prediction: evolutionary information 

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Residue interaction 

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285


Residue-level features for interaction prediction: physical-chemical information 

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Combining the three problems 

Protein"
interactions"

Domain"
interactions"

Residue"
interactions"

i. Independent levels" iii. Bidirectional flow"ii. Unidirectional flow"

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Empirical results (AUCs) 

•  Highest accuracy by bidirectional flow 

•  Additive effect: 2 vs. 3 levels 

Ind. levels Unidirectional flow Bidirectional flow 

Level PD PR DR PD PR DR PDR 

Proteins 71.68	
 72.23	
 72.50	
 72.82	


Domains 53.18	
 61.51	
 71.71	
 68.94	
 71.20	


Residues 57.36	
 54.89	
 53.81	
 72.26	
 63.16	
 77.86	


[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Finding Central Points in 
Networks: Hubs & 

Bottlenecks 
Where are key points networks ? How do we locate them ? 
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Global topological measures 

Indicate the gross topological structure of the network 

Degree (K ) Path length (L ) Clustering coefficient (C ) 

[Barabasi] 

Interaction and expression networks are undirected 
5 2 1/6 
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Global 
topological 

measures for 
directed 
networks 

In-degree 

TFs 

Targets 

Regulatory and metabolic networks are directed 

Out-degree 
5 3 
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Scale-free networks 

Hubs dictate the structure of the network 

log(Degree) 

lo
g(

F
re

qu
en

cy
) 

Power-law distribution 

[Barabasi] 
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Hubs tend to be Essential 

Essential Non- Essential 

Integrate gene essentiality data with protein 
interaction network. Perhaps hubs represent 
vulnerable points? 
[Lauffenburger, Barabasi] 

"h
ub

bi
ne

ss
" 

[Y
u 
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l.,
 2
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3,

 T
IG

] 
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Relationships extends to "Marginal Essentiality" 

Essential Not important 

Marginal essentiality measures relative importance of 
each gene (e.g. in growth-rate and condition-specific 
essentiality experiments) and scales continuously with 
"hubbiness" 

important Very important 

"h
ub

bi
ne

ss
" 

[Y
u 

et
 a

l.,
 2

00
3,

 T
IG

] 
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Another measure of Centrality: 
Betweenness centrality 

Betweenness of a node is the number of 
shortest paths of pairs of vertices that run 
through it -- a measure of information flow. 

Freeman LC (1977) Set of measures of centrality based on betweenness.  
Sociometry 40: 35–41.  

Girvan & Newman (2002) PNAS 99: 7821. 
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Betweenness centrality -- Bottlenecks 

Proteins with high betweenness are defined as 
Bottlenecks (top 20%), in analogy to the traffic system 

George Washington 
Bridge 
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Bottlenecks & 
Hubs 

[Yu et al., PLOS CB (2007)] 
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Bottlenecks are what matters in 
regulatory networks 

P < 10-20 

P < 10-4 

[Yu et al., PLoS Comput Biol (2007)] 
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Networks & Variation 
Which parts of the network vary most in sequence?  

Which are under selection, either positive or negative? 



METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND 
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME 

 * From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005) 

Source: PMK 

ILLUSTRATIVE 

Hapmap/Perlegen 

ENSG000XXXX: 
rsSNP00XXX 
CNV_XXX 
DN/DS XXXX 
Recombination rate  

Map to ENSEMBL genes 

Interactome 

SNPs 

~30000 interactions 
from HPRD and 
Y2H screens 

Database of Genomic Variants 

Map to proteins in the  
interaction network 

Ensembl Genes 

•  Dataset of network 
position / parameters 
(e.g. degree centrality 
or betweenness 
centrality) in 
relationship to SNPs, 
CNV’s, recombination 
rates and positive 
selection tests 

Result 

CNVs + SDs  



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS 

Intra-species variation Fixed mutations 
(differences to other species) 

Single- 
basepair 

Structural 
variation 

Copy Number Variants 

Single-Nucleotide Polymorphisms 

Segmental Duplications 

Fixed Differences 

Source: PMK 

Positive 
Selection 

Positive 
Selection 



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK 
PERIPHERY 

 Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007) 

High likelihood of 
positive selection 

Lower likelihood of 
positive selection 

Not under positive 
selection 

No data about 
positive selection 

Positive selection in the human interactome 



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE 
SELECTION 

•  Peripheral genes are likely to under 
positive selection, whereas hubs 
aren’t 

•  This is likely due to the following 
reasons: 

– Hubs have stronger structural 
constraints, the network periphery 
doesn’t 

– Most recently evolved functions 
(e.g. “environmental interaction 
genes” such as sensory 
perception genes etc.) would 
probably lie in the network 
periphery 

•  Effect is independent of any bias 
due to gene expression differences 

Degree vs. Positive Selection Reasoning 

 * With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection 
(McDonald Kreitmann and LDD) corroborate this result. 

Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007) 

Hubs 



CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs 

•  This result also confirms our initial 
hypothesis – peripheral nodes tend 
to lie in regions rich in SDs.  

•  Since segmental duplications are a 
different mechanism of ongoing 
evolution, the less constrained 
peripheral proteins are enriched in 
them. 

•  Note that despite the small size of 
our dataset for known SD’s we get 
significant correlations. It is to be 
expected that the correlations will 
get clearer as more data emerges* 

Centrality vs. SD occurrence Reasoning 

 * Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome   

Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007) 
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Networks & Variation 2 
Variation in the miRNA network 
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Analyze Regulation in microRNA-
target Network 

•  Relationship between target in degree  
(number of micro-RNAs that regulate gene)  
& evolutionary rate of gene? 

◊  In deg. related 3' UTR size  

•  Expectation: more regulation, more constraint 
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Relationship between microRNA 
regulation and protein evolution 

Important genes are regulated more 
intensively regulated by the 
microRNAs  

[Cheng et al., BMC Genomics, 2009 (in press)] 
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MicroRNA regulation:  
a two-way strategy  

For non-housekeeping genes, functionally critical genes are intensively regulated by miRNAs 
and prefer long 3’UTR. 

housekeeping genes, however conserved, are selected to have shorter 3’UTRs to avoid miRNA 
regulation. 

[Cheng et al., BMC Genomics, 2009 (in press)] 
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Social Network Comparison #1 
Comparing the Yeast Regulatory 

Network to a Governmental Hierarchy 
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Social 
Hierarchy 
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Determination of "Level"  
in Regulatory Network Hierarchy with 

Breadth-first Search 

54
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[Yu et al., PNAS (2006)] 
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Regulatory Networks have similar 
hierarchical structures 

S. cerevisiae E. coli 

[Yu et al., Proc Natl Acad Sci U S A (2006)] 

1 

2 

3 

4 
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Yeast Regulatory Hierarchy:  
the Middle-managers Rule 

[Yu et al., PNAS (2006)] 
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Yeast Network Similar in Structure to 
Government Hierarchy  

with Respect to Middle-managers 
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Characteristics of Regulatory Hierarchy: 
Middle Managers are Information Flow 

Bottlenecks 

[Yu et al., PNAS (2006)] 
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Social Network Comparison #2 
Broadening the comparison to 
different types of hierarchies & 

different types of biological networks 
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Different kinds of Hierarchies 

•  High degree of co-
regulation and can 
be organized into 
hierarchies  

•  A law firm 

•  Without well-defined 
levels & with more co-
regulatory partnerships  

•  A club or a scientific  
    collaboration network  

•  Well-defined levels 
and a clear chain of 
command  

•  A military hierarchy  

Decreases σ2 of ‘stress’ 

Increases ‘collaboration’ 

[Bhardwaj et al., PNAS (2010), in press] 
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Collaborative Nature of the Nodes 

Degree of  
Collaboration 

Autonomous Collaborative 

1/6=0.16 4/4=1 

[Bhardwaj et al., PNAS (2010), in press] 

More 
Collaborative: 
Democratic 
More 
Autonomous: 
Autocratic 
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Higher species are more show more 
collaborative nodes (more democratic) 

[Bhardwaj et al., PNAS (2010), in press] 
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Collaborative Nature of the Levels 

Level L 

= 0.1   0.3   0.2    0.4 

[Bhardwaj et al., PNAS (2010), in press] 
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Collaboration Between Levels 

L 

M 

[Bhardwaj et al., PNAS (2010), in press] 
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Middle Managers Interact the Most in 
Efficient Corporate Settings 

•  Floyd, S. W. et al (1992)  
Middle management 
involvement in strategy and its 
association with strategic type 
Strategic Management Journal 13, 153-167. 

•  Woodward, J. (1982) Industrial Organization: Theory 
and Practice (Oxford University Press, Oxford). 

•  Floyd, S. W. et al (1993)  
Dinosaurs or Dynamos? 
Recognizing Middle 
Management's Strategic Role  
The Academy of Management Executive 8, 47-57. 

•  Floyd, S. W. et al (1997)  
Middle management's strategic 
influence and organizational 
performance 
Journal of Management Studies 34, 465-485. 

[Bhardwaj et al., PNAS (2010), in press] 
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Co-regulation Instantiates a Multi-Input Motif 

[Bhardwaj et al., PNAS (2010), in press] 
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Network Comparisons #3  
Relating the size of co-regulation in 

partnership networks  
with the scale of the regulated 
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Co-regulation Partnerships 

•  Readily seen in many commonplace social contexts.  
•  An academic institution (say a high school), multiple 

teachers supervise the same set of students and have 
partnership interactions amongst themselves.  

[Bhardwaj et al., PLoS Comp Biol (2010), in press] 
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Building and Analysis of 
Networks 

Edge placed if two "
regulators co-regulate"

[Bhardwaj et al., PLoS Comp Biol (2010), in press] 
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Scaling of Regulators with Targets 

Linear in E. coli (Due to operons) 
Exponential Saturation in others [Bhardwaj et al., PLoS Comp Biol (2010), in press] 
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Comparison to Social Networks: Partnership networks 
effectively saturate with increasingly complex output 

Blogs Network         Email Network 

[Bhardwaj et al., PLoS Comp Biol (2010), in press] 



Do not reproduce without permission 

Software Network Comparison 
Comparing the structure and evolution 
of biological regulatory networks and 

software call graphs  
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E. Coli Transcriptional regulatory 
network vs Linux kernel call graph 

[Yan et al., PNAS (2010), in press] 
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E. coli  transcriptional  
regulatory network0 

Linux call graph 

[Yan et al., PNAS (2010), in press] 
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% in E. coli 
regulatory 
network 

% in Linux  
call graph 

master 
regulator  

4.6 29.6 

middle 
manager 

5.1 58.2 

workhorse 90.2 12.3 

Pyramidal vs  
Top-heavy 

Degree distribution 
Roles of hubs 

Comparison: hierarchical organization 

in-­‐degree	
  hubs	
  	
  
e.g.	
  “printk”	
  

out-­‐degree	
  hubs	
  
e.g.	
  “crp”	
  

[Yan et al., PNAS (2010), in press] 
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Comparison: organization of modules 

E. Coli 
TRN 

Linux call 
graph 

# of modules 64 3665 

Average overlap 4.3% 80.7% 

Maximum node 
reuse 

15.6% 87.5% 

Average node reuse 3.5% 8.4% 

Modules are labeled by master regulators: 
TFs, high-level starting functions 

TRN: 
modules overlap little,  
components are  
less generic: “ompF”  

Reuse=2/3	
  

M1	
   M2	
   M3	
  

Overlap(M2,M3)=	
  

reuse=1/3	
  

Call graph: 
modules overlap,  
Functions are highly  
reused (generic): 
“printk” 

[Yan et al., PNAS (2010), in press] 
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Comparison of persistent components 

•  Persistent genes (preserve among different 
genomes) vs persistent functions (preserve among 
different releases) 

•  Building of the hierarchy:  
◊  TRN: Bottom up. Regulatory changes are the main 

driving forces of evolution 
◊  Call graph: top down 

specialized proteins 
are preserved  
across genomes 

generic guys are more  
likely to be persistent 

[Yan et al., PNAS (2010), in press] 
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Evolutionary rate of persistent functions 

Higher reuse 

Persistent genes evolve slowly Two classes of persistent functions 

purifying	
  selecEon	
  
adapEve	
  evoluEon	
  

purifying	
  selecEon	
   adapEve	
  evoluEon	
  

[Yan et al., PNAS (2010), in press] 
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79 

Why and so what? 

Kim et.al. PNAS 2007 

The difference can be explained 
by the nature of hubs evolution:   
tinkering vs design 

  Independent modules:  

  robust 

  costly:  the system needs a variety of tools for different tasks 

  Overlap modules (reuse):  

  Less robust:  

  Breakdown of a generic component is harmful to the whole system 

  Fragile in the sense any change in a module may require compensating 
changes in a generic function 

  cost effective: components can be used by need to be fine-tuned 

Spearman	
  correlaEon	
  
r=0.25	
  
P<10-­‐75	
  

[Yan et al., PNAS (2010), in press] 
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Outline: Molecular 
Networks •  Why Networks? 

•  Generating Networks 

- Scanning for Targets of Modular 
Domains 

- Propagating Known Information 
(yeast ppi) 

•  Central Network Points 
- Hubs & Bottlenecks  

(yeast ppi & reg. net) 

•  Networks & Variation  
(human ppi & miRNA-targ. net) 

•  Social Network Comparisons 
(reg. net. in many organisms) 

-  in rel. to social hierarchy  

-  scaling in rel. to partnerships 

•  Computer OS Comparisons 
(E. coli reg. net) 
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Conclusions on Networks:  
Generation 

•  Predicting Networks 
◊  Scanning for sequence motifs 

recognized by modular protein 
domains (motips) 

◊  Extrapolating from the Training 
Set 

◊  Principled ways of using known 
information in the fullest possible 
fashion 

•  Multi-level learning 
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Conclusions:  
Analysis of Network Structure 

• Centrality Measures in 
Protein Network 
◊  Hubs & Bottlenecks 

◊  Importance of later in regulatory 
networks  
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Conclusions: Connecting 
Networks & Variation 

•  Positive selection (adaptive evolution) at 
the network periphery 

◊  On a sequence level, it can be seen 
as positive selection of peripheral 
nodes  

◊  On a structural level, it can be seen 
as the pattern of SDs that display 
significantly higher allele frequencies 
in non-central genes 

•  miRNA network 

◊  More highly regulated genes are 
under more constraint in miRNA-
target networks  

◊  Exception for housekeeping genes  
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Conclusions: Comparison to 
Social Hierarchies 

•  Regulatory Network Hierarchies 

◊ Middle managers dominate, sitting at info. flow 
bottlenecks 

◊ Paradox of influence & essentiality 
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Conclusions: Comparison to 
Social and Regulatory Hierarchies 

•  Regulatory Network Hierarchies 

◊ Democratic v Autocratic 

◊ Collaborative (locally democratic) fraction of 
networks increases with organism complexity 

◊ Middle managers most collaborative 

◊ Most interaction occur between two middle 
managers (as seen in efficient corporate 
hierarchies) 

•  Number of collaborative partners saturates even while 
scale of targets governed increases 

◊ Also seen in social networks 
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TopNet – an automated web tool 

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);  
Similar tools include Cytoscape.org, Idekar, Sander et al] 

(vers. 2 : 
"TopNet-like  

Yale Network Analyzer") 

Normal website + Downloaded code (JAVA) 
+ Web service (SOAP) with Cytoscape plugin 
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More Information on this Talk 
SUBJECT: Networks!

DESCRIPTION:  
Brown Applied Math, Providence, RI; 2010.04.09, 16:00-17:00; 
[I:BROWNMATH] (Long networks talk, derived from [I:MBINETS], 
including callgraph*, coregscaling*, reghier*, & motips* for 1st time. 
Whole talk took 2 hrs. with questions.)  

(PPT works on mac & PC and has many photos. Paper references in the talk were mostly from 
Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each 
topic abbrev. which is starred is actually a papers “ID” on the site. For instance,  
the topic pubnet* can be looked up at  
http://papers.gersteinlab.org/papers/pubnet  ) 

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at  
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to 
relevant papers or link to gersteinlab.org).   
.  
PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see 

http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be easily 

queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt . 


