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The problem: Grappling with

Function on a Genome Scale?
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~1 ,200 protein-coding genes

(~950 pseudogenes)

[Hillier et al, Nature, 424, 157]
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EF2 YEAST

Descriptive Name:
Elongation Factor 2

Lots of references
to papers

Summary sentence
describing function:
This protein promotes the
GTP-dependent
translocation of the
nascent protein chain from
the A-site to the P-site of
the ribosome.

Traditional single

molecule way to integrate

evidence & describe

File

Edit

function

View Favorites Tools Help

Links > | Norton Antivirus ()

home About UniProt

theN\yniversal protein knowledgebase

Text Search UniProt Knowledgebase

JniProt

Getting Started Searches/Tools Databases Support/Documentation

General information about the UniProt/Swiss-Prot entry

Entry name EF2_YEAST
P32324
Release 27, 01-OCT-1993

Release 27, 01-0CT-1993

Primary accession number

Entered in Swiss-Prot

Sequence was last modified

Annotations were last modified | Release 47, 01-MAY-2005

Protein description

Protein name ‘ Elongation factor 2

Synonyms ‘EF-Q

References

[

=

NUCLEOTIDE SEQUENCE (EFT1 AND EFT2).

MEDLINE=92112760; PubMed=1730643; [NCBI, ExPASy, EBI, Israel, Japan]
Perentesis J.P., Phan L.D., Laporte D.C., Livingston D.M., Bodley 1.W.;
“Saccharomyces cerevisiae elongation factor 2. Genetic cloning, characterization of
expression, and G-domain modeling.”;

Ci

FUNCTION This protein promotes the GTP-dependent translocation of the nascent protein chain from

«

the A-site to the P-site of the ribosome.

SUBCELLULAR LOCATION

Cytoplasmic.
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Some obvious issues in scaling single

molecule definition to a genomic scale

« Fundamental complexities

- Role Conflation:
molecular, cellular, phenotypic

- Often >2 proteins/function

- Also Multi-functionality:
2 functions/protein

phenotypically — e.g. Pleiotropic effects such as
human PKU being involved in retardation &
eczema

cellular role — e.g. Depending on the molecule it
interacts with HSP70 is involved with protein

folding, translocation of proteins into mitochondia,
biogenesis of certain subunits..

[HSP from Craig et al, Rev Physiol Biochem Pharmacol (2006) 156:1 ; Terms from Seringhaus et al. GenomeBiology (2008)]
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Some obvious issues in scaling single
molecule definition to a genomic scale

 Fundamental complexities

- Role Conflation:
molecular, cellular, phenotypic

- Often >2 proteins/function

- Also Multi-functionality:

2 functions/protein

* phenotypically — e.g. Pleiotropic effects such as
human PKU being involved in retardation &
eczema

+ cellular role — e.g. Depending on the molecule it
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[HSP from Craig et al, Rev Physiol Biochem Pharmacol (2006) 156:1 ; Terms from Seringhaus et al. GenomeBiology (2008)]
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Hierarchies & DAGs of
controlled-vocab terms
but still have issues...
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MIPS (Mewes et al.) GO (Ashburner et al.)

[Seringhaus & Gerstein, Am. Sci. '08]
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Networks (Old & New)

Fringe: Vital in boundary formation

in developing fly wing.

Dvl
Fringe
Delta > Notch
/ﬁ 0
Serrate
PSE2 PSEN
NCSTN APH-1
TACE

Numb: mutations impair

sensory organs in flies

Numb

ltch: linked to RBPMS A CSNK2AT
itchy skin in mice 7/
o EPS8 CSNK2A2
Iz
—— TP53

DLK1 Dv AP2A

AN \ |

Fringe GS/KS\B Numb MDM2

Deltex — GRB2

Classical KEGG pathway

__» Deltex
] Delta

'Notch: with defects, flies
develop notches in wings

Serrate

B DLLT
CSL
TACE
I
DLG1

CTNNBH1

\ MAML
! APP
PCAF ™ LEF1
PSE2 — PSEN SN
'l vyi L Y skip
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M RELA cSL
G22P1
ABL1

APBA1

Same Genes in High-throughput Network

[Seringhaus & Gerstein, Am. Sci. '08]
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Networks occupy a midway point in
terms of level of understanding

1D: Complete ~2D: Bio-molecular 3D and 4D:

Genetic Partslist Network
Wiring Diagram

Detailed structural understanding
of cellular machinery
(e.g. ribosome in different
functional states)

(c)'09

[Fleischmann et al., Science, 269 :496] [Jeong et al. Nature, 41:411] [Chiu et al. Trends in Cell Biol, 16:144] 1



Networks as a universal language

“ Internet

=

[Burch & Cheswick] Electronic
Circuit =<y
2NN |
Disease Neural Network
Spread [Cajal]
[Krebs] :
Protein $
Interactions J ¢
[Barabasi] o on i eemiy e o SOCial NetWO rk 3




Key comparisons

* Electronic circuits share similar design
principles compared to biological networks

(synthetic biology)
» Social Systems provide useful intuition

* Biological systems and computer operating
systems (The genome has often been
called the OS for a living organism)

() Execute information processing tasks

() adaptive systems shaped by changing
environments (Natural vs man-made systems)

10 Lectures.GersteinLab.org (c) 2009



Using the
position in
networks to

describe

function

Guilt by association
Rod Blagojevich
Governor Q
Antoin ‘Tony’

Rezko Chris Kelly
Campaign Campaign
fundraiser fundraiser
STATE HEALTH AND INDIVIDUALS AND
PENSION BOARDS FUND-RAISERS Lobbyist 1 O
Stuart
Levine JE ' Indmdual A
Board [N '
member | ¢

Fund-raiser A
A\ 4 William Cellini )
= Board member -’

Individual B Engineering
3 Firm 1
llinois {
Health \ oy /
Eac ilities i Hospital 9
lannin William Cellini i " i >
BOElfdg TRS Board member All Ata Highway Eotiiad Contributor 1

Contractor 1

Gov.
KATHLEEN
BLANCO
puty Q
BILL MAHER

MICHAEL BROWN, FEMA,
FEDERAL AGENCIES

“It's the responsibility of faith-based
‘organizations, of churches and charities
and others to help those people.”

“To the extent that the federal
gwenmnt didn't fully do its
job right, | take responsibility.™

s 'jj
MAYOR f\\“ - - %fs
A

z
é’ -g ‘. %Q
gl T A P B LAY E

“The anthem of the self-
loathers. ... You can never
blame victims. You can

never blame the poor. ...
those who didn't get
out of New Orleans, it's not
their fault. Even those that
could and didn', it's not
their fault, it's not their
it

“You cannot read a newspaper
without the gloating and the
happiness with which the
mainstream pross is roporting the
president's approval numbers.”

B8 Marsh The New Yok Times

Guve rnor A

Chief of Staff Finding the ?
causal regulator G

IS e O (the "Blame '§
@ Advisor Game") §
Editorial %
Board §
o

wiey [NY Times, 2-Oct-05, 9-Dec-08] -
@ o -
Tribune Company H



Combining networks forms an ideal way

of integrating diverse information

Part of the
TCA cycle

——> Metabolic

pathway

............. » Transcriptional

regulatory
network

Physical protein-

protein Interaction :

Co-expression
Relationship
Genetic interaction

(synthetic lethal)
Signaling pathways

N
~



 Why Networks?

» Generating Networks
— Scanning for Targets of Modular
Domains
- Propagating Known Information
(yeast ppi)
Central Network Points
- Hubs & Bottlenecks

(yeast ppi & reg. net)

Networks & Variation

(human ppi & miRNA-targ. net)

» Social Network Comparisons

(reg. net. in many organisms)

— in rel. to social hierarchy
- scaling in rel. to partnerships

« Computer OS Comparisons

(E. coli reg. net)

Outline: Molecular

Networks

1 3 - Lectures.GersteinLab.org ¢



Example: yeast PPI
network

Actual size:

() ~6,000 nodes
— Computational cost: ~18M pairs

¢ Estimated ~15,000 edges -
— Sparseness: 0.08% of all pairs (Yu etal., © /~
2008) T -

Known interactions: -

¢ Small-scale experiments: accurate but few
— Qverfitting: ~5,000 in BioGRID, involving
~2,300 proteins

( Large-scale experiments: abundant but
noisy
— Noise: false +ve/-ve for yeast two-hybrid
data up to

45% and 90% (Huang et al., 2007)

[‘,

|

14.
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Different Types of Molecular Networks

ansc“p\ion factors and Sfacy,
\ rs

Target genes

Undirected

Protein-protein Interaction networks TF-target-gene Regulatory networks \ 4

aiyoxyiate 5
Cycle ]
0
Py — i iih
>
sloegetote
N
e MDH2 |
7
o 2
o L I ﬁim
50
b &

o5

Metabolic pathway networks miRNA-target networks

—_—

Yl @ ©

Directed

[Toenjes, et al, Mol. BioSyst. (2008);
Jeong et al, Nature (2001); [Horak, et al,
Genes & Development, 16:3017-3033;
DeRisi, lyer, and Brown, Science,
278:680-686]
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Generating
Networks

How do we construct large
molecular networks.
From connecting sequence
patterns for modular interaction
domains to matching sequences

16
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Profiling for

interaction

specificity o
£

Modular protein domains
interact with peptides
containing a specific motif

Search for these
sequences in a target
proteome to find potential
interactions

Motips

- O Y Y v

Scanning for target candidates

Proteome

with pre-computed features

Predicting interaction targets

Reconstructing networks/pathways

\

/

1 7- Lectures.GersteinLab.org



Determining the

interaction
specificity

* Experimental methods
to identify domain
interaction specificity

() phage display
experiment (e.g. SH3)

() the peptide library
screen (e.g. S/T Kinase)

« Scan the target
proteome with
normalized PWMs

[Lam et al., BMC Bioinfo. (‘10, press)]

Binding Specificity Experiment

A R P
Phages with Each spotis a
combinatorial -5 [ J mixture of
peptides are one of the 20
mixed with the -4 o amino acids
________ e > immobilized 5 fixed at that
- .i = . target position
- : Example for
¢ The bound S/TKinase
phages are -1 €] screen
eluted,
amplified, and +1
the process are "
+2
repeated.
Clones are +3
sequenced after
several rounds +4
Phage Display Experiment Peptide Library Screen

Motif Scanning and Scoring

Position Specific Scoring Matrix

0 1 2 3 4 5 6 7 8 9

SR SR ' TS S R

P P Vv P E K P V W L

18



Features Scoring and Integration

Integrating structural
and conservation e
features

 Calculate features for
potential interaction
sites:
{) Surface accessibility fo Kinase
{ Protein disorder 1o T2
() Sequence Conservation

 Build a naive Bayes
classifier based on a T |
validated training set to ]
integrate the features i |

Domain Target Prediction

0 L L L ) L L L L !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[Lam et al., BMC Bioinfo. (‘10, press)]

19



Generating Networks #2

How do we construct large molecular networks?
From extrapolating correlations between functional genomics data with fairly
small sets of known interactions, making best use of the known training data.

(c) '09
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Training sets

Known interactions

Known non-interactions

Unknown

()09
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Network prediction: features

:< 1 8 \\‘ 2 ;
)
x,=(0.8,2.2,1.5, ...)
)

x;=(43,0.1,75,...) )

sim(X;, X,) = 0.62 3
sim(X;, X3) =-0.58

Similarity scale:

Gasch et al., 2000 1 _

« Example 1: gene expression

x,=(0.2,2.4, 1.5, .

&

22



Network prediction: features

« Example 2: sub-cellular localization

sim(x, x,) = 0.81
sim(X,, X;) =0.12
http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif

Similarity scale:
1

()09
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Data integration & Similarity Matrix

24.



Learning methods

An endless list:

» Docking (e.g. Schoichet and Kuntz 1991)
Evolutionary (e.g. Ramani and Marcotte, 2003)
Topological (e.g. Yu et al., 2006)
Bayesian (e.g. Jansen et al., 2003)
Kernel methods
( Global modeling:
« em (Tsuda et al., 2003)
« kCCA (Yamanishi et al., 2004)
« kML (Vert and Yamanishi, 2005)

» Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
¢ Local modeling:

» Local modeling (Bleakley et al., 2007)

Let’s compare in a public challenge!
(DREAM: Dialogue for Reverse Engineering Assessment and Methods)

25



Our work: efficiently propagating

known information

Training set expansion
« Motivation: lack of training examples
» Expand training sets horizontally

Multi-level learning

 Motivation: hierarchical nature of
interaction

« Expand training sets vertically

DREAMS in silico regulatory network
reconstruction challenge

Local model 1

Local model 2

PPI predictions

!

!

RRI predictions

26



Protein interaction

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

27 -
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Domain interaction

Pfam domains: PFO0107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

28.-
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Residue interaction

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

29.
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Combining the three problems

Protein
interactions

Domain
interactions

s Residue
ﬁé interactions

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

———————

—_——— e e ———

i. Independent levels

_

ii. Unidirectional flow

A

—_— e — — —

Y

iii. Bidirectional flow

()09
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Empirical results (AUCs)

Ind. levels Unidirectional flow Bidirectional flow
Level PD PR DR PD PR DR PDR
Proteins 71.68 72.23 72.50 72.82
Domains 53.18 61.51 71.71 68.94 71.20
Residues 57.36 54.89 53.81 72.26 63.16 77.86
A
| ri_l | ’}_II | ’}_II
I I I I I I I I I I | I
] ] I ] ] ]
A\ 4 I \4 1 f 1 f
. Highest accuracy by bidirectional flow
. Additive effect: 2 vs. 3 levels

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

()09
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Finding Central Points in
Networks: Hubs &
Bottlenecks

Where are key points networks ? How do we locate them ?

32 - Lectures.GersteinLab.org ¢



Global topological measures

Indicate the gross topological structure of the network

O
O

\4

Degree (K) Path length (L) Clustering coefficient (C)
5 2 1/6

Interaction and expression networks are undirected

[Barabasi]

33.



TFs
")

' Targets
Global
topological

measures for y v

directed 471§
networks

In-degree Out-degree

3 5

Regulatory and metabolic networks are directed

34



Scale-free networks

Power-law distribution

log P()hA "N _‘
Ve 1)(/\)~,\ Y / ’ ‘
] R el
® >€ A
- ALY
loe k 7/
log(Degree) ¢

Hubs dictate the structure of the network

[Barabasi]

35



[Yu et al., 2003, TIG]

Hubs tend to be Essential

Integrate gene essentiality data with protein
interaction network. Perhaps hubs represent
vulnerable points?

[Lauffenburger, Barabasi]
25 -

"hubbiness”
Average degree (K)
I \./
I

(&)
]

Non- Essential

Essential



[Yu et al., 2003, TIG]

Relationships extends to "Marginal Essentiality”

Marginal essentiality measures relative importance of
each gene (e.g. in growth-rate and condition-specific
essentiality experiments) and scales continuously with g

"hubbiness"

25 -
O -

- 20 4
7)) = [
N
O 945-
.E g T T
O 4 I
_Q 310-
> o I
I,

m— o
Not important important Very important Essential



Another measure of Centrality:
Betweenness centrality

Betweenness of a node is the number of
shortest paths of pairs of vertices that run
through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness.
Sociometry 40: 35-41.

Girvan & Newman (2002) PNAS 99: 7821.

38.



Betweenness centrality -- Bottlenecks

Proteins with high betweenness are defined as

Bottlenecks (top 20%), in analogy to the traffic system

4 - 2 = ]
Wt prad s NPt b
AP o i | By
2 oy o . e - |- % |
[ £ ' Y. ' ahid \ =
ok

George Washington
Bridge

39.
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O
O
O
O

Bottleneck

Hub-bottleneck node

Non-hub-bottleneck node

Hub-non-bottleneck node

Non-hub-non-bottleneck node

Bottlenecks &

Hubs

[Yu et al., PLOS CB (2007)]

()09
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Bottlenecks are what matters in

60%

requlatory networks

90% A

40% A

30% A

20% A

Fraction of essential genes

10% A

0%

P <1020

7]

B Hub-non-bottlenecks
M Bottleneck-non-hubs

Interaction Network

[Yu et al., PLoS Comput Biol (2007)]

v

o 0
P <104

Regulatory Network

()09
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Networks & Variation

Which parts of the network vary most in sequence?
Which are under selection, either positive or negative?

42.

(c)'09



METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE
- A
Hapmap/Perlegen Database of Genomic Variants
International
HapMap
Project
P, Map to ENSEMBL genes
SNPs CNVs + SDs
Ensembl Genes
ENSGO00XXXX:
V0 Result
DN/DS XXXX )
Recombination rate
Int . * Dataset of network
n eracf ome Map t eins in th position / parameters
viap fo proteins mk © (e.g. degree centrality
interaction networ or betweenness
> centrality) in
relationship to SNPs,
4 CNV’s, recombination
~30000 interactions rates and positive
from HPRD and selection tests
Y2H screens
- )

* From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)

Source: PMK



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

Single-
basepair

Structural
variation

Source: PMK

Intra-species variation

Positive
Selection

I )
N
- e >
S

) O

Single-Nucleotide Polymorphisms

a0 - .
Positive
- e——— Selection
= - —
m -
I I

Copy Number Variants

Fixed mutations
(differences to other species)

Fixed Differences

Segmental Duplications



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK
PERIPHERY

Positive selection in the human interactome

-
@ High likelihood of
positive selection
Lower likelihood of
® positive selection
[ J
o Not under positive
_ selection
®
O No data about
positive selection
[o}
[ J
.

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE

SELECTION

Degree vs. Positive Selection

5,

]

45P¢ Spearman Rank P-value: 1.2e-06

41e

w

D

3

=
o

—

Positive Selection Test Likelihood Ratio
N
U‘l

o
($)]

1 & & & & 1

o

05 1 15 2
Betweenness Centrality

o

2.5

x 10°

Network periphery

Network center

[ 1 Hubs

Reasoning

Ve

-

* Peripheral genes are likely to under
positive selection, whereas hubs
aren'’t

* This is likely due to the following
reasons:

— Hubs have stronger structural

constraints, the network periphery
doesn’t

— Most recently evolved functions
(e.g. “environmental interaction
genes” such as sensory
perception genes etc.) would
probably lie in the network
periphery

* Effect is independent of any bias
due to gene expression differences

* With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection
(McDonald Kreitmann and LDD) corroborate this result.
Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)




CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

Centrality vs. SD occurrence Reasoning

Ve

* This result also confirms our initial
hypothesis — peripheral nodes tend
8- - to lie in regions rich in SDs.

7 -Spearman Rank P-value: 3.5e-04 .

* Since segmental duplications are a
different mechanism of ongoing
evolution, the less constrained
peripheral proteins are enriched in

46 them.

Number of Overlapping SDs
(6]

* Note that despite the small size of

2me 9 our dataset for known SD’s we get
significant correlations. It is to be
| TR OO e & O O0b o o oo 1 1o : .
0 05 1 15 2 25 3 35 4 expected that the correlations will
Betweenness Centrality x 10° get clearer as more data emerges*
Network periphery Network center

-

* Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome
Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)



Networks & Variation 2

Variation in the miRNA network

48



Analyze Regulation in microRNA-
target Network

* Relationship between target in degree
(number of micro-RNAs that regulate gene)
& evolutionary rate of gene?

¢ In deg. related 3' UTR size

* Expectation: more regulation, more constraint

49 Lectures.GersteinLab.org (c) 2009



Ka/Ks (human vs. mouse)

Relationship between microRNA

requlation and protein evolution

(18]
o . p=-0.21
Q |
O T T T L)
0 100 200 300
Number of regulatory miRNAs (human)
Humanvs. HNumberof genes Correlation P-value

chimpanzee
mouse

rat

cow

chicken

11326
13280
12270
11683
8061

-0.11
-0.21
-0.20
-0.21
-0.18

2.E-32
7.E-128
4 E-107
8.E-115
1.E-57

Important genes are regulated more
intensively regulated by the
microRNAs

[Cheng et al., BMC Genomics, 2009 (in press)]

(c) '09
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Ka/Ks (human vs. mouse)

0.4

0.3

0.2

0.1

0.0

MicroRNA requlation:

a two-way strategy

For non-housekeeping genes, functionally critical genes are intensively regulated by miRNAs

and prefer long 3’'UTR.

housekeeping genes, however conserved, are selected to have shorter 3’'UTRs to avoid miRNA

regulation.
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[Cheng et al., BMC Genomics, 2009 (in press)]
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Social Network Comparison #1
Comparing the Yeast Regulatory
Network to a Governmental Hierarchy

52.
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Social
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Determination of "Level"
in Regulatory Network Hierarchy with
Breadth-first Search

|. Example network with all 4 motifs Il. Finding terminal nodes (Red)

lll. Finding mid-level nodes (Green) IV. Finding top-most nodes (Blue) =

Level 3

Level 2
Level 1

Level 1
[Yu et al., PNAS (2006)]
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Yeast Requlatory Hierarchy:
the Middle-managers Rule

—Average # of regulated genes (out-degree)

A. Regulatory hierarchy in S. cerevisiae —=# of TFs at each level

P <0.01

P<6X10*

Level in hierarchy

0 50 100 150 200

56- Lectures.GersteinLab.org

[Yu et al., PNAS (2006)]
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Yeast Network Similar in Structure to

Government Hierarchy

with Respect to Middle-managers

B. Governmental hierarchy of a representive city (Macao)

Level in hierarchy

r—Average # of regulated people (out-degree)
-=-# of managers at each level

|

(B
# of people N



Characteristics of Requlatory Hierarchy:

Middle Managers are Information Flow

Bottlenecks

. Average betweenness at each level

P<10™

60. (9)

P<10™

< ™

Ayoueisaly

N

TNELER]

15

10

89

Average betweenness (x1000)

[Yu et al., PNAS (2006)]



Social Network Comparison #2

Broadening the comparison to

different types of hierarchies &
different types of biological networks

59.



Different kinds of Hierarchies

BOBCOCEE000

Autocratic

Well-defined levels
and a clear chain of

command

A military hierarchy

Democratic

Without well-defined
levels & with more co-
regulatory partnerships

A club or a scientific
collaboration network

Autocratic | Democratic | Intermediate
Betweenness () 1.03 3.6 33
Betweenness (&) 4.1 1.08 3.4
Var. Betw. (triangles) 2.1 0.58 1.74
Var. Betw. (all) 2.9 1.4 1.9
Dy, otian 0 091 0.71

Intermediate

hierarchies
e Alaw firm

‘ ‘ Decreases 02 of ‘stress’
‘ ‘ Increases ‘collaboration’

[Bhardwaj et al., PNAS (2010), in press]

« High degree of co-
regulation and can
be organized into
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Collaborative Nature of the Nodes

+
NN 00000

Autonomous Collaborative

, i
Collaboration Dcollab

More
Collaborative:
Democratic
More
Autonomous:
Autocratic

1/6=0.16

Autonomous

[Bhardwaj et al., PNAS (2010), in press]
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Higher species are more show more
collaborative nodes (more democratic)

100 -

oo
-
. ! .
l
U

o
o
|

LN
o
|

Collaborative Fraction

N
o O
L l L

E coli Yeast Mouse Rat Human

[Bhardwaj et al., PNAS (2010), in press] %



Collaborative Nature of the Levels

ety
il @ @ @ @
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OOO0000
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[Bhardwaj et al., PNAS (2010), in press]
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Collaboration Between Levels
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[Bhardwaj et al., PNAS (2010), in press]
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Middle Managers Interact the Most in

Efficient Corporate Settings

- Floyd, S. W. et al (1992)

Middle management
involvement in strategy and its

association with strategic type
Strategic Management Journal 13, 153-167.

« Woodward, J. (1982) Industrial Organization: Theory

and Practice (Oxford University Press, Oxford).

- Floyd, S. W. et al (1993)

Dinosaurs or Dynamos?
Recognizing Middle

Mana(?ement's Strategic Role
The Academy of Management Executive 8, 47-57.

Floyd, S. W. et al (1997) _
Middle management's strategic
influence and organizational

performance
Journal of Management Studies 34, 465-485.

f

L

_ - htip:/fwww.funehumor.com
&

[Bhardwaj et al., PNAS (2010), in press]
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Co-requlation Instantiates a Multi-Input Motif

AV

[Bhardwaj et al., PNAS (2010), in press]

Multi-input Motifs
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Network Comparisons #3
Relating the size of co-regulation in
partnership networks
with the scale of the regulated

67-



Co-requlation Partnerships

Ceens

* Readily seen in many commonplace social contexts.

* An academic institution (say a high school), multiple
teachers supervise the same set of students and have
partnership interactions amongst themselves.

[Bhardwaj et al., PLoS Comp Biol (2010), in press]
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Building and Analysis of

Networks

Edge placed if two
regulators co-regulate

Neok e Ssadles Number of | Number of .Numbe.r of
regulators targets Interactions
Transcription E. coli 160 1.420 3,123
Transcription Yeast 157 4410 12,873 5
Transcription Mouse 144 1,092 2,403
Transcription Rat 91 461 1,092
Transcription Human 156 3,032 6,896
Phosphorylation Yeast 87 1,337 4,083
Modification Human 518 1,218 2,782

[Bhardwaj et al., PLoS Comp Biol (2010), in press]
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Scaling of Reqgulators with Targets

(a) E. coli transcription
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[Bhardwaj et al., PLoS Comp Biol (2010), in press]
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Comparison to Social Networks: Partnership networks
effectively saturate with increasingly complex output

Blogs Network Email Network
Uﬁ o) ' /*
LN
U N 4 41
FB
AN
_ U ol _
1000 0 1000 ot
™ [ ] (L,.’
a ] o) ' .
& 800- T 800-
£ o L
8 600-. § 600-
S 400- © 400-
Q9 2 .
E 2004 € 2001 )R’=0.82
A 2
0- T T T T T 1 0- T T T T T T T 1
0 50 100 150 0 100 200 300 400
Number of Out-going links Number of Recipients

[Bhardwaj et al., PLoS Comp Biol (2010), in press]
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Software Network Comparison
Comparing the structure and evolution
of biological regulatory networks and
software call graphs
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E. Coli Transcriptional regulatory
network vs Linux kernel call graph

E. coli transcriptional . .
regulatory network Linux call graph
Nodes Genes (TFs & targets) Functions
g (subroutines)
. Edges e Fional Function calls
Basic regulation
properties of
- )= |
P External constraints Natural environment N arch.ltecture,
customer requirements
Origin of evolutionary Random mutatl_on & e
changes natural selection
E. coli transcriptional Linux call graph g
regulatory network
Number of nodes 1378 12391
Number of persistent nodes 72%* (5%) 5120 (41%)
Number of edges 2967 33553
Number of modules 64 3665
Number of comparative 200 bacterial genomes 24 versions of kernels
references
Years of evolution Billions years 2(0) years

73

[Yan et al., PNAS (2010), in press]



E. coli transcriptional
regulatory network

master regulator

middle manager

workhorse

[Yan et al., PNAS (2010), in press]

Linux call graph
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Comparison: hierarchical organization

% in E. coli % in Linux
(
regulatory call graph
Pyramidal vs network
Top-heavy t
master
4.6 29.6
regulator
middle
5.1 58.2
manager
workhorse 90.2 12.3
10° .‘
~©-out-deg |
§ —o—in-deg | |
_5{ ‘
10
S s
Degree distribution E
Roles of hubs B L2
a 10
2
E
2
2107
out-degree hubs i hub
e.g. “crp” in-degree hubs
}\ _——e.g. “printk”
[Yan et al., PNAS (2010), in press] 10° 102 10 10" '-ll\)

Degree



Comparison: organization of modules

Modules are labeled by master regulators:
TFs, high-level starting functions

TRN:

modules overlap little,
components are

less generic:“ompF”

M1

4

M3

Overlap(M2,M3)=

mM20M3 2
(M2U M3 11
Reuse=2/3 reuse=1/3
E. Coli Linux call )
TRN graph Call graph: =
# of modules 64 3665 ?Odu.les overlaP’
unctions are highly
Average overlap 4.3% 80.7% reused (generic):
_ “printk”
Maximum node 15.6% 87 5%
reuse
Average node reuse 3 5% 8. 4%

[Yan et al., PNAS (2010), in press]
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Comparison of persistent components

 Persistent genes (preserve among different
genomes) vs persistent functions (preserve among
different releases)

specialized proteins
are preserved
across genomes

generic guys are more
likely to be persistent

 Building of the hierarchy:

() TRN: Bottom up. Regulatory changes are the main
driving forces of evolution

<> Call graph: top down [Yan et al., PNAS (2010), in press]



Evolutionary rate of persistent functions

purifying selection adaptive evolution purifying selection
adaptive evolution

. i K
0.2 (lP 1 0 |
I : 4 3 :
|| i 0.07 T !
| 1 |" "-‘ : )
0.16| | . ,‘ | )
‘. | ; ¢ | |
[72] l | " \-‘ | |
45} | 1 | \ | |
8 | ! 1‘ \ !
c 0.12 |' : 0.05 Qfl W ! |
5 | : | T\ Higher reuse
.5 | ! [ ] |
3 | | X | |
S 0.08 \ | R! |
[T 1 " | |
. 0.03 | R R ,‘
| Y\ R
0.04 ! i o e
: 4 |
0 0.01 f
0 1 2 0 0.25 0.5 0.75 1
dN/dS normalized number of times a function is revised

Persistent genes evolve slowly

[Yan et al., PNAS (2010), in press]

Two classes of persistent functions
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Why and so what?

10°

The difference can be explained
by the nature of hubs evolution:
tinkering vs design

4

»

Independent modules:
» robust

Positive Selection Test Log Likelihood Ratio
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10°

10°

Betweenness Centrality

Kim et.al. PNAS 2007

Kin+1

Spearman correlation
r=0.25 '
P<107>

0.25 0.5 0.75 1
normalized number of times a function is revised

» costly: the system needs a variety of tools for different tasks

Overlap modules (reuse):
» Less robust:

» Breakdown of a generic component is harmful to the whole system

» Fragile in the sense any change in a module may require compensating
changes in a generic function

» cost effective: components can be used by need to be fine-tuned

[Yan et al., PNAS (2010), in press]
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 Why Networks?

» Generating Networks
— Scanning for Targets of Modular
Domains

- Propagating Known Information
(yeast ppi)

Central Network Points
- Hubs & Bottlenecks

(yeast ppi & reg. net)

Networks & Variation

(human ppi & miRNA-targ. net)

» Social Network Comparisons

(reg. net. in many organisms)

— in rel. to social hierarchy
- scaling in rel. to partnerships

« Computer OS Comparisons

(E. coli reg. net)

Outline: Molecular

Networks

80 - Lectures.GersteinLab.org ¢



Conclusions on Networks:
Generation

* Predicting Networks

() Scanning for sequence motifs
recognized by modular protein
domains (motips)

() Extrapolating from the Training
Set

¢ Principled ways of using known
information in the fullest possible
fashion

'y
Ny
\

Y A~
y -y,
%«92‘,':—;
(c) '09

LT

* Multi-level learning
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Conclusions:
Analysis of Network Structure

* Centrality Measures in

Protein Network
() Hubs & Bottlenecks

{ Importance of later in regulatory
networks

82.



Conclusions: Connecting
Networks & Variation

» Positive selection (adaptive evolution) at
the network periphery

¢ On a sequence level, it can be seen
as positive selection of peripheral
nodes

() On a structural level, it can be seen
as the pattern of SDs that display
significantly higher allele frequencies
in non-central genes

* miRNA network

¢ More highly regulated genes are
under more constraint in miRNA-
target networks

() Exception for housekeeping genes

83 Lectures.GersteinLab.org (c) 2009



Conclusions: Comparison to

Social Hierarchies

» Regulatory Network Hierarchies

( Middle managers dominate, sitting at info. flow
bottlenecks

() Paradox of influence & essentiality

84 Lectures.GersteinLab.org (c)2009



Conclusions: Comparison to
Social and Regulatory Hierarchies

» Regulatory Network Hierarchies
¢ Democratic v Autocratic

() Collaborative (locally democratic) fraction of
networks increases with organism complexity
¢ Middle managers most collaborative

() Most interaction occur between two middle
managers (as seen in efficient corporate
hierarchies)

* Number of collaborative partners saturates even while
scale of targets governed increases

( Also seen in social networks

85 Lectures.GersteinLab.org (c) 2009



E. coli transcriptional

regulatory network Linux call graph
Structure Pyramidal Top-heavy
Hierarchical -
L. . Generic workhorse
organization Characteristic hubs Upﬁg{:iﬁ}gie‘glth functions with
g high in-degree
. High-level starting
Downstream modules Master THs resp Japlils functions which initiate
for sensing i .
as labeled by . . execution for specific
environmental signals
oL tasks
Organization
of modules }
Node reuse Low High
Overlap between Low Eian
modules
- Specialized (non- Generic or reusable
Characteristics : i
generic) workhorses functions
Persistent Location in hierarchy Mostly bottom Mostly top
nodes
Mostly conservative Conservative (e.g.
Evolutionary rate y strlen) & adaptive (e.g.
(e.g. dnaA)
mempool alloc)
Building of hierarchy Bottom up Top down
Design
DS Optimal solution favors Robustness Lot bR

(reuse of components)

86 Lectures.GersteinLab.org (c) 2009



tYNA

(vers. 2:
"TopNet-like
Yale Network Analyzer")

- an automated web tool

/2 tYNA - Control Panel osoft Internet Explorer i 18] x| <
Fle Edit View Favorites Tools Help i
3 = T > =
Qe - © - %] 2] ‘h|/)5eerch ¢ Favorites @‘ R @) .
Address [£] lab Order=idacategoryOrder=id DVANCED_VIEWRistTyp: J ] e ‘Lmks ”‘@ = e}
= D
= =
tYNA =
<>
Getting started AP| WSDL Download tYNA guide Plugins for Cytoscape Contact Known problems
You are logged in as kevin. Logout View: Simple Advanced
List | Owned ~| [ Biological ¥| networks with | (Atribute name) x| = [ (Attribute value) ¥ List >
= =
Workspace manager Networks in database (upload download ) I > <
Load an existing network @ Creation >
1D Mame Creator date <
Load 14. Uetz 2000 yeast two ... ¥ 14 Uetz 2000 yeast two hybrid kevin  21-Feb0B  Delete o
15 Ito 2001 yeast two hybrid kevin  21-Feb-06  Delete
Into workspace 0 ¥ >
16 Ho 2002 pull down kevin  21-Feb-06  Delete
Categorized by Nil > . P
17 Gavin 2002 pull down kevin  21-Feb-06  Delete Display options:
Default col
Load 18 Jansen 2003 PIT keWin 21-Feb0B  Delote elaull 2018
Node: [blue ~| Edge: [ ] Text: | =l
19 MIPS yeast PPI kevin  21-Feb-06  Delete Special coloring: @
Current working networks in your workspaces: 21 BIND yeast data Kkevin  21-Feb06  Delete € None
k 0 i . geq, 1, value, neighbors=false,
P tersectiont 9 22 DIP yeast data kevin  21-FebDB  Delete & Color gradient: [Degree =] of [Original network =] from [areen = to[red =
“Uetz 2000 yeast two hybrid", 23 Kim 2006 structural interaction  kevin  21-Feb-06  Delete € Color class:  Class name: | 7] )
“Ito 2001 yeast two hybrid")) .
24 Han 2004 FY| data kevin  21-Feb-06  Delete Redraw 3
Waorkspace 1 (empty) s
25 Luscombe 2004 regulatory kevin  21-Feb-06  Delete )
Workspace 2: (empty)
Workspace 3: (empty) Clustering Coefficients
database ( upload d ) B Node |Edge g“""ec‘e‘:' Degrees @ ) (7] (2]
ategory Counts |Count omponents
| Py T o | D Creator Creation date \4 Avg. |S.D. |Min. |Max. |Avg. |S.D. |Min. |Max ‘Avg ‘SD ‘Min ‘Max ‘Avg ‘SD ‘Min Max
ultiple-network analysis
& e = ‘n"g“fv':’k ‘ 275‘ 137‘ 109 ‘130 ’074’ 1 ‘ 7 ‘0.04 0.19 |0.00 | 1.00 ‘2,51 ‘157‘ 1 ‘ 9 ‘3.50 ‘2022 ‘0.00 200.00
4 Internet

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);
Similar tools include Cytoscape.org, ldekar, Sander et al]
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More Information on this Talk

SUBJECT: Networks

DESCRIPTION:

Brown Applied Math, Providence, RI; 2010.04.09, 16:00-17:00;
[I:BROWNMATH] (Long networks talk, derived from [I:MBINETS],
including callgraph*, coregscaling*, reghier*, & motips* for lst time.
Whole talk took 2 hrs. with questions.)

(PPT works on mac & PC and has many photos. Paper references in the talk were mostly from
Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each
topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic pubnet* can be looked up at
http://papers.gersteinlab.org/papers/pubnet )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see
http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kWpOtppt , that can be easily

queried from flickr, vizz http : / /www. £1lickr.com/photos/mbgmbg/tags/kwpotppt
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