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2001: Most of the genome is not coding (only ~1.2% exon).
It consists of elements such as repeats, regulatory regions,

non-coding RNAs, origins of replication, pseudogenes,
segmental duplications....What do these elements do? How should

[THGSC, Nature 409, 2001]
they be annotated? [Venter et al. Science 29, 2001] -
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2007 : Pilot results from ENCODE Consortium on

decoding what the bases do

- 1% of Genome (30 Mb in 44 regions)
- Tiling Arrays to assay Transcription & Binding
- Multi-organism sequencing and alignment

- Careful Annotation [IHGSC, Nature 409, 2001]

- Variation Data [ENCODE Consortium, Nature 447, 2007] .
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Human DNA, the Ultimate Spot for Secret Messages (Are Some There Now?)

By DENNIS OVERBYE
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nier wrote, “able to survive almost all conceivable sce-
narios."

If cockroaches can be archives, why not us? The hu-
man genome, for example, consists of some 2.9 bi
those letters — the equivalent of about 750 megabyt.
data — but only about 3 percent of it goes into cnn{pu\
lag the 22,000 or so genes that make us what we are

The remaining 97 percent, so-called junk DNA,
looks like gibberish. It’s the dark matter of inner space

We don’t know what it is Saying to or about us, but within
that sea of megabytes there is plenty of room for the
Imagination to roam, for trademark labels and much
more. The King James Bible, to pick one obvious exam-

Ple, only amounts to about five megabytes

If a bacterium can be encoded
with E=mc2, if cockroaches can
be archives, why not us?
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ggested in 1973 that the primitive Earth was
ith DNA broadcast through space by an alien

> than Francls

species
As a result, it has been suggested that the search

for extraterrestrial intelligence, or SETI, should look in-
ward as well as outward. In an article in New Scientist,
Paul Davies, a ¢ osmologist at Arizona State University,

Different Views of the

Function of Junk DNA
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mice, chickens and do
But Dr. B
ultraconserved” s
of them had turn
mand and control f
“Why they nee
tery,” he said, noting th
something undergo mo
bits of DNA that neither &

hanged, or mutated.

[NY Times, 26-Jun-07]
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genome, said that many
ng important com-

xserved remains & mys-

genes that do
Most junk

an organism
opies of their mes-

orignal letters in the
This is the major polst

Using the same code that computer keyboards use, the
Japanese group... wrote four copies of Albert Einstein’s famous

formula, E=mc2... into the bacterium’s genome... In so doing they
have accomplished at least a part of the dream that Jaron Lanier,
a computer scientist and musician, and David Sulzer, a biologist
at Columbia, enunciated in 1999. To create the ultimate time
capsule as part of the millennium festivities at this newspaper,
they proposed to encode a year’s worth of the New York Times
magazine into the junk DNA of a cockroach. “The archival
cockroach will be a robust repository,” Mr. Lanier wrote, “able to
survive almost all conceivable scenarios.”
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sections of iunk DNA seem to be markedly resistant to
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How might we

annotate a human |_

text?

Coloris
Function

Lines are

Similarity

[B Hayes,
Am. Sci.
(Jul.- Aug.
’06)]

F YOU WANT TO BE a thorough-

goig werldtaveler, younced.fe,
learn 6,912 ways to say “Where is the |

ltoilet, please?” That’s the number of |
SIAngudges KROW 10 Be spoKen Dy the.

peoples of planet Earth, according to
Ethnologue.com.

If you want to be the complete poly
glot you also have quite

a challenge ahead of you, learning all

Iprintf("hello, world\n") ; I

(This one 1s In C.) A catalog maintamned
by Bill Kinnersley of the University of
Kansas lists about 2,500
languages. Another survey, compiled
by Diarmuid Piggott, puts the total
even higher, at more than 8,500. And
keep in mind that whereas human lan
guages have had millennia to evolve
and diversify, all the computer languag
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we’ve
been inventing one language a week,
on average, ever since Fortran.

For ethnologists, linguistic diversity
is a cultural resource to be nurtured
and preserved, much like biodiversity.

L

Brian Hayes

Every|programmer

knows there is one

truelprogramming
language. A new one
every week

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There are[programmers Jof my ac-
quaintance who will dispute that last
statement. I expect to hear from them.
They will argue—zealously, ardently,
vehemently—that we have indeed
found the right programming lan-
guage, and for me to claim otherwise
is willful ignorance. The one true lan-
guage may not yet be perfect, they’ll
concede, but it’s built on a sound foun
dation and solves the main problems,
and now we should all work together
to refine and improve it. The catch, of
course, is that each of these friends will

I?he Semicolon Wars |

cide which end of a boiled egg to crack.
This famous tempest in an egg cup was
replayed 250 years later by designers of
computer hardware and communica
tions protocols. When a block of data is
stored or transmitted, either the least-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if everyone made the same
choice. But that’s not what has hap-
pened, and so quite a lot of hardware
and software is needed just to swap
ends at boundaries between systems.
This modern echo of Swift’s Endian
wars was first pointed out by Danny
Cohen of the University of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace.”
The memo, subsequently published
in Computer, was widely read and ad-

mired; the plea for peace was ignored.
hother feua—iargely forgoffen,-l

I think, but never settled by truce or
treaty—focused on the semicolon. In
Algol and Pascal, program statements
haVe to be separafed Dy semicolons. ror
example, inx:=0; y:=x+1; z:=2the
semicolons tell the compiler where one
statement ends and the next begins. C
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Overview of the Process of
Annotation of non-coding Regions

« Basic Inputs

Doing large-scale similarity comparison,
looking for repeated or deleted regions

2. Functional Genomics.

Determining experimental signals for activity (e.g. transcription)
across each base of genome

Finding repeated or deleted blocks in the genome

1. As a function of similarity (i.e. age, perhaps using explicit models)

2. vs. other organisms, vs. human reference, or within the human population
(synteny, SDs, and CNVs)

3. Big and small blocks
(duplicated regions and retrotransposed repeats)

4. Creation of formal annotations (e.g. genes and pseudogenes)



: * Determining experimental
Overview of signals for biochemical
Functional Genomics activity (e.g. transcription)

Annotation Process across each base of genome

— Development of Sequence (and Array)

Technology
* Normalizing & Scoring Signal,
Correcting Artifacts, Segmenting to
create Small Annotation Blocks

— Output of Production Pipelines and
Surveying a Single Type of Annotation

/\ /\ on a Large-scale

» Clustering Small Blocks into Larger
Ones, Surveying
— Integrated Analysis Connecting
Different Types of Annotation

« Building networks and beyond




ENCODE + modENCODE Consortia
for functional annotation & 1KG Consortium for variable
blocks in human population

— g,
E N C O D E Centromere //‘. polymerase

specification
Condensation ————— Histone Replication origins and
and cohesion modifications, pre-replicative complex
variants, and
. binding proteins
S S Transcription Pre-RC &l
Nuclear pore and factors 7 polymerase
nuclear lamin Al - [
interactions .l &
s
Isolate «-H
Domain-level .D chromatin Nt
regulation and f Extract
dosage compensation »‘f RNA

‘ t ” , Origin mapping, ShortRNA  Long RNA
/ timing,

miRNA  mRNA

I _ 8ts differential piRNA  hnRNA
e replication SiRNA  ncRNA
Generate
f antibodies = l |

N
AN o=
Epigenetics and transcription regulation Replication Transcription and splicing

Microarray or
sequence

[ Celniker et al., Nature ('09) 459:927 ]

1000 Genomes

A Deep Catalog of Human Genetic Variation

(c) '09



Technologies used for Interrogating the
Human Genome, over the past 6 years:
Reading out "active" or "tagged” regions

Tiling Arrays
- - p=q_ 3 Applicationina
o | variety of
‘02 contexts:
800 bp PCR Products
‘ Transcription
04 36mer Oligonucleotide Array Mapping
Massively Parallel Sequencing DNA bim_:ling (inc.
chromatin struc.) ¢
‘06+ AGTTCACCTAAGA... Replication

.\ | ‘ m—  CTTGAATGCCGAT...

— 1} GTCATTCCGCAAT. . Structural
Variation
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Plummeting Cost of Sequencing

o 10

1000000000 -

100000000 N e Original Data: Memory cost: $/Mbyte
o "Original Data: CPU cost: $/MFLOP"
10000000 - A Original Data: Sequencing cost: $/base-pair

1000000 - ——Fitto CPU
——Fitto Mem. Cost

100000 - —Fitto Seq. Cost
10000 -
1000

100

1

0.1

0.01
0.001
0.0001
0.00001
0.000001

0.0000001 T T T T T .
1980 1985 1990 1995 2000 2005 2010

[Greenbaum et al., Am. J. Bioethics ('08)]
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Outline

* Regulatory Sites

a. ChipSeq signal processing to call
puncate "hits"

b. Clustering of hits into broader blocks
and annotating them
» Variable Blocks in Genome (CNVs,SDs)

Ala. Calling them with various signal
processing approaches
« Pseudogenes

A. Pattern-match tools for calling them
A. Focus on one group of
pseudogenes

c. Integrating them with annotations of
transcription and regulation

e Future of Annotation

() What is a "gene" post encode?

12.
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Signal Processing:
Normalizing Signal and
Finding Initial Annotation

Blocks ("Hits")

13 - Lectures.GersteinLab.org ¢



Representative Signal
from Chip-Seq

C
STAT1 ChIP-sequencing signal profile map on human chromosome 22 16 uniquely mapped sequence reads and
their directional extension in a tag cluster
I 20000000 | 25000000 | 30000000 | 35000000 | 40000000 | 45000000 | N
97 . :_
1 l..L.J..uuuh :
Overlap
identification
48650000 | 48700000 | 48750000 | Overlap profile
12 | -12
LWL UL I Wl _th bk AU RN | (RS Chr. 22 1
[Robertson et al., Nat. Meth. ('07); Zhang et al. PLOS Comp. Bio. (in revision, '08)] -4
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ChiIP-seq vs ChIP-chip: Much cleaner
signhal from sequencing than arrays

IFNAR2 5> p-4>->p) IFNAR1 p>>>>>p->>p-H-p-t i

IFNAR2 l======A4444-4—-H

IFNAR2 I-——=—=44+44-—4-—1

IFNAR2 l-=—==—444—4—-}

13353 bbobhrdrssiom
UCSC Genes IFNARZ s+ 1M
IL10RB P00 p-3pp
11 =1 bbb
AK123722 =
IL10RB p>p--pp
IL10RB >>>3p-p>>p>>-0
H H—H——4 ' I —+H—— -
0.75 _
STAT1
ChlIP-chip J
o b ile vl . a1l M ._lLIlLLJ.‘L”_.L_l_m_J,_H Qo _di ____H_- i lj_ _J.h ll.i.-___,_L_Lh o,
Yale 36-36 Sites I ;
100 _
STATT
ChlIP-Seq 1 L
(0 R I S (SRR SPRPITSTI | RS 1) TP | S S S
STAT1 Sites I i n

[Rozowsky et al. Nat. Biotech ('09)]
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ChiIP-Seq vs Input DNA Control

Pol Il ChIP-Seq

u-iuhhu N PRI | haud )

N Input DNA

20
.n..n...;..L.a.h..L..“.h.a.Ja.u.u....m.nlm_.....‘ Ju.u..;...luul.J“n.l..nh.u..M.. ...n.lu.J...J...n.h.m...A.n.ml.m.kaMJM.MxﬁuLAMMMIMJ&MM.JJ..‘.AJ‘AM- sk ‘Mhﬁhuﬂuid.mhll M.u.hmlul.m..ul Mookt abie isthil doadi
100

Interferon-Y stimulated STAT1 ChIP-Seq

Interferon-Y stimulated Input DNA

0 usnaekiiah. umlu.u..h..;.uuu.m.‘.h-u -m‘“Mmehld- P FTIY P77 YOI | u...l.._j....u.m....nlu...mmh;.dum.u AT N TR -I.A.J.n.l.h T T NP AT I TY | TRRTY A OF T PR o T TR ATR T JR T TR WII 1)

"' Nhla"bpak-‘)le Bases (1Kb)

X?yPEP%‘ " RBX1 EP300
o 1

000 9,500,000 39,520,000 39,540,000 39,560,000 39,580,000 39,600,000 39,620,000 39,640,

00 39,660,000 19,680,000 19,700,000 39,720,000 39,740,000 39,760,000 39,760,000 39,800,000 39,620,000 39,840,000 39,860,000 39,880

SLC25A17 ST13

[Rozowsky et al. Nat. Biotech ('09)]
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ChiIP-Seq vs Input DNA Control

Pol Il ChIP-Seq

u-iuhhu N PRI | haud )

; Input DNA

2

.n..x....;..L.a.h..L..“.h.u.Ja.u.u....m.nlm_.....‘ _m.u..;..uuulim_..h......u. ...n.lu.J...J...n.h.m...A.n.ml.n..\.u..-M.u..JM.M;LMLMMJMIMMJAIA.AALM._.JL.“AJ.‘AM-A. u...uh.;nhd.num.ul.mu M.u.hmlul.m..ul Mookt abie isthil doadi
100

Interferon-Y stimulated STAT1 ChIP-Seq

Interferon-Y stimulated Input DNA

0 usnaekiiah. umlu...u...i.l..;.um.m.‘.h-u .m‘mm;d‘-.nmm.hmd. P FTIY P77 YOI | u...l.._j....u.m...nlu...m....h.dum.u AT N TR -I.A.J.n.l.h T T NP AT I TY | TRRTY A OF T PR o T TR ATR T JR T TR WII 1)

"' Nhla"bpak-‘)le Bases (1Kb)

X?NPEP%‘ i’ RBX1 EP300
I 1t

000 9,500,000 39,520,000 39,540,000 39,560,000 39,580,000 39,600,000 39,620,000 39,640,

00 39,660,000 19,680,000 19,700,000 39,720,000 39,740,000 39,760,000 39,760,000 39,800,000 39,620,000 39,840,000 39,860,000 39,880

SLC25A17 ST13

[Rozowsky et al. Nat. Biotech ('09)]
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Genome / Genomic region

UCSC gaps and repeats definition \ﬂ

Remove gaps and repeats Corre Cti ng
Chip-seq Signal by

||

1

(=

Simulating a Non-
Randomly place binding sites uniform Genomic

|| B

e Background

}wround weight distribution w

Add sampling weights to background

_ N = u " . We developed in silico ChIP
Inter-site weight distribution SequenCing, a CompUtatiOnaI
w Add sampling weights to binding sites m eth Od tO Simulate the
_ experimental outcome.
R N . = P
» l’””“l ‘ ia-Rlls WeIght piedio \ﬂ Redistribute sampling weights in binding sites s
| N ! | 1 ]
ﬂ Place sequence tags
] N i ] L | _

[Zhang et al. PLoS Comp Bio. ('08)]
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PeakSeq: Scoring

e N Relative to Controls

oL |, || 1. Threshold
I 1V T VI T T YT WP
[ P | IR | LI 1T Potential Target Sites
i w‘”\- ‘l T ?\.wu, 1F] Ll ",'I 1[0 i p. \r.\!n I‘.l‘ 1l .J W\ v .|| .‘ ’ Y ,. [ | ‘
! - | Mappability Map !
R I, GRAMDA TBC1D22A
e _— e | I S St i e s e s E— |
i |
CELSR1 CERK ]

|. b i

Filter for Potential

Targets based on

ChIP-Seq Sample

NPT ORTEY NPPY PR

[ [ e [
Potential Target Sites

[Rozowsky
et al. Nat.
Biotech
("09)]

Input DNA

MMMMMMLMMMWM

ChIP-Seq Sample

Pf=0
Slope =1.24
R2 =0.71

Input DNA

Enriched Sites

"Mappability"
Simulation

Scale Input
Relative to
ChlP

()09
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Bionomial
Expectation
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& 20000
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: 10000
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[Rozowsky et al. Nat. Biotech ('09)]
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Number of

-

Reads for

=—Enriched Pol Il Targets

=——Enriched STAT1 Targets

Saturation

|
. A‘J“Am

10 15 20

Depth of Sequencing (million reads)

S0320000 50840000  A0BS0000  SORI0000 40900000  A0920000

25

27.5
25.0
225
20.0
17.5
15.0
125
210.0
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5.0
2.5
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Pol Il ChIP-Se
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A0TE0,000  A07E0000  40.300.

Fi

NAGA
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Tag count and

Genomic identity its distribution

Frequency

Frequency

—— Actual data, STAT1 stimulated
— Actual data, STAT1 unstimulated
—— Simulation, uniform bkgd only
—— Simulation, varying bkgd only

1 5 10 50 100 500

Tag count

— Actual data

—— Simulation, uniform bkgd, uniform sites
—— Simulation, varying bkgd, uniform sites
—— Simulation, uniform bkgd, varying sites
Simulation, varying bkgd, varying sites

1 5 10 |

F— Low —+ Medium +— High % Ultra-high

t Power-law t Right ‘tail’ 1
I»Background-‘#—‘(— Binding sites ———

Background
or binding sites

ChiIP-sequencing simulation

Contrary to the common belief, the
background is mildly fluctuating and
contains some ‘hot’ spots.

Simple uniform background model does
not count for all the variation in the
background and thus leads to a serious
underestimation of the background noise.

Our study demonstrates that both the
genomic background of ChIP and binding
sites are not uniform.

Simulated distributions segments the
actual distribution into four sections.

[Zhang et al. PLoS Comp Bio. ('08)]
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Scored results
consistent with
simulation

Actual peaks at tail of
power-law graph

[Rozowsky et al. Nat. Biotech. ('09)]

10000

1000

100

Number of Targets

10

— Unenriched STAT1 Targets

Enriched STAT1 Targets

10

100

Peak Tag Count

1000 10000




e, 4 e S ERRE g R Tl A *
i 'yﬁ“;i’,“:.{‘:-':?.‘ garPst g
[ R ¢ LN T S A

) o3
e IS o S
e U YA R e o
7w A "'4"""”” (IHOR
,“‘"'& e o1 3, ohE o5 E." oy '-! g g
- < AL T T B B
s gt i Wi
R Yy Gt
,,-x;,«tw "’.:‘#:

ot
ool B
e

o
iy
"'N&V"' i 3 LA ,\.
¥ © sutvdy
9
Ry
e g e i
v 3 ’;',é!,;.

5
Nt
A

o
a s

ey

Annotating a single type of signal
on a large-scale:
Clustering and Characterizing
Binding Sites (TREs)

(c) '09
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TRE analysis on the micro-
genomic scale

MESO-GENOMIC SCALE

MACRO-GENOMIC SCALE (TRES distribution MICRO-GENOMIC SCALE

) analysis) (Promoter assay and
(Chromosome analysis)

TSS validation)

’_ "“‘\\ ’ G
Y74 P\\’))\ oy
'\ )) J ss Cer
@”@ )

\ ))\((v(() Transcriptional

regulatory elements
(transcription factor binding sites

and histone modifications)
Chromatin structure

[Zhang et al. (2007) Gen. Res.]
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Clustering

Binding Sites at ~50kb
resolution

MESO-GENOMIC SCALE

(TREs distribution
analysis)

V)k) f

Transcriptional
regulatory elements
(transcription factor binding sites
and histone modifications)

[Zhang et al. (2007) Gen. Res.]
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Landscape of

ENCODE

Transcriptional

Requlatory

Elements

* Analyzed 105 lists of

transcriptional

regulatory elements

in the encode
regions

29 transcription

factors, 9 cell lines,

2 time points
ORNA Pol2

(¢ Histone modifications such

as Ac & Me
()Core promoters

() Promoter proximal
elements

( Others such as

enhancers, silencers,
insulators, & response

elements

(CFTR ENm001 et hR s e
rterieukin] ENm002 k-t
{Apo] ENmOG3 - Hirf-rrrrber
(Ohv221 ENm04. —rdrrrkbtr—rr—rr— s e
(Chr211 ENm005. 4 i HrHHrt oo ik e
(OnrX ENmo08 Lkl A M b H—r—
(Chr191 ENmO07 ikt
[o—globin] ENm008  Y-HiHHHM— b

Zhang et al. (2007) Gen. Res.

ENr112 L L
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|| |
ENr211 ———1— T

ENi212 — -t

| L1 1y
ENr213 ——— | T

EN311 it
ENa2 (Ll

|
ENr313 T Tt

[B-globin] ENm009 1 o -
[HOXA] ENmO010 i
[IGF2/H19] ENMOT1  —rrhb i b — -
[FOXP2] ENm012 s r—r——1
[7921.13] ENmO13 e ———fr— i e
[7431.33] ENm014 e b ——
ENr 11—t ENr121 — 4

ENM22 ot —r i
ENM23 gt

EN221 i

111 11 [
ENr222 LI LI TITT

ENr223 ittt
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EREERE T
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enr1s3 ikttt

enst el sk b
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I
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Collect Total Hits for Each Factor in ~6000 Bins of 10 to 100 kb

and Compare to Random Control

Nucleotide positions in the ENCODE regions

1 ~30 Mb

—_
=
I
|

000000111111000000111111 ‘

105 [~ -

ChIP-chip expt. tracks

Data matrix

Sliding-window
transformation

Genomic bins in the ENcODE regions

[2 1 5996
S 1

B | e, E
_.5:- .....................................................
22
(0]

R
; | |
1 3000 0 0 2000
o

= 105

(@)

Count matrix A
Zhang et al. (2007) Gen. Res.

Track 1 —— —_ —_ _

Track 2 __ — ——

@ Binary coding

001111:11100000111100000000011 11001 110000
Track 1 " —— — —

! : : i
Track 2 OOOOOOE‘I 1111000000000111100000000001 1111110

Track 1 —— —_ —_ -

(c) '09

Track 2 __ — ——

Track 17 —— o — —_
Track 2’ —_— — _—
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Non-random distribution of TREs

TREs are not evenly
distributed throughout
the encode regions (P <
2.2x10-16),

The actual TRE

distribution is power-law.

The null distribution is
‘Poissonesque.’

Many genomic
subregions with extreme
numbers of TREs.

Zhang et al. (2007) Gen. Res.

Number of subregions

60

50

40

30

20

10

—— Actual TRE distribution
ffffff Random TRE distribution
130-kb subregions
140-kb subregions
150-kb subregions
160-kb subregions

Number of TREs in a subregion

(¢)'09
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Biplot to Show Overall

Relationship of TFs

and Genomic Bins
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Principal component Vs

TAF1 c-Myc

H3K4me3
— H3ac 443C
H3K4me2 Po = H3K4med--------
—
o - BOR4 [ T T |
SRR TS B
| Y
T - o ___?."'3K27me3
c\] | .
|
’
? ”
STATA
Sp3
<
I c-Jun
Senqguence nonspecific factors
UI'J —  Sequence specific factors
BAF155 " BAF170
I [ [ [
-6 —4 -2 0

Principal component V4

Results

of Biplot

Zhang et al. (2007)

Gen. Res.

0.5

0.0

-0.5

-1.0

Principal component V4

 Biplot groups TFs into sequence-specific and

sequence-nonspecific clusters.

() c-Myc may behave more like a sequence-nonspecific TF.

¢ H3K27me3 functions in a transcriptional regulatory process in a rather
sequence-specific manner.

 Genomic Bins are associated with different TFs and in

this fashion each bin is "annotated" by closest TF

cluster

" FH3K27me3

()09
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Signal Processing 2:
Finding Variable Blocks in

the Human Genome

31 - Lectures.GersteinLab.org ¢



Terminology for Variable Duplicated Elements in the Human Genome

[ ] [ 1] [ ]
Blocks in both CNVs (variable blocks in the Fixed SDs ("fixed" blocks in the
mouse & human human population) human population)

: : : S Y & ——— A — —— S — —— ——
. : : : : : :
D ; . . : : .

o = _—
qc, = )

= :

c u : : : : :
o
m -

e

=
=S : : : : : :

(22}
(<]

2 I-:-
o

e

(72

Segmental duplications (SDs) - Recent duplications
(~40 million years and younger)

32



Terminology for Variable Duplicated Elements in the Human Genome

Venter

Stoicescu Watson

[ ] ] 1]

Blocks in both CNVs (variable blocks in the Fixed SDs ("fixed" blocks in the

|

Parent Paralog Pseudogene
gene
B = s> 00 ¢ P

Segmental duplications (SDs) - Contain Duplicated

Paralogs and Duplicated Pseudogenes

33.



Detection of Block Variation in

Personal Genomics

* Main steps in
Human Genome
Resequencing
() SNP detection
) Haplotype phasing
() Determing small

iIndels

() Reconstructing
Large Structural
Variants
(most challenging)

* Different Techniques for
SV Reconstruction

() Segmenting Arrays and
Sequencing Read-depth

() Discordently placed
paired-ends

(¢ Finding split reads

¢ Doing small scale

reassembly in presence
of repeats

34



Segmentation of
Read Depth or
Array Signal
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* To get highest resolution on
breakpoints need to smooth &

BreakPtr HMM segment the signal

» BreakPtr: prediction of
breakpoints, dosage and cross-
hybridization using a system
based on Hidden Markov Models

0.5 '
0| s I RSP eusrvesl
-0.5
ACGTGACAC ATAAGCACACCA ATTGCTTGAGGGACCT [TA{3GCACAGT TAAC ATGATAAGCACACCA ATTGCTTGAGGTGAC
sequence NOT TO SCALE

Fluorescence
log2 ratio

O
pzd
>

—a—a .

Gain
Normal —. I . I
| I [

http://breakptr.gersteinIab.orq‘ﬁg

Loss

Korbel*, Urban* et al., PNAS (2007)



BreakPtr statistically integrates array signal and DNA
sequence signatures
(using a discrete-valued bivariate HMM)

Array values

Sequence

Transition A Transition B

Duplication Fe—————- Normal :

Transition A’ Transition B’

Korbel*, Urban* et al., PNAS (2007) o



‘Active’ approach for breakpoint identification: initial scoring
with preliminary model, targeted validation (with sequencing),
retraining, and rescoring

SDs
— 2503

i . . N
\ﬂediction of CNV breakpoints

500

normalized fluorescent
intensity log,-ratios

400

/ Breakpoint
validation

-~ 1003

— [intermediate B]

[sequencing

300

Maximum number of parameters per transition state

Model S otemedite ] |©
. . 10 = [Intermeaiate =
par.ame.ter Training data o  leore]|
estimation D | RS .
= O
Parameter Gold standards <l } g
optimization ; 1 . e
I I 1 1 1 I |
0.0 0.5 1.0 15 20 25 3.0

log 10 (number of CNVs available for parameter estimation)

CNV breakpoints sequenced in ~10 cases following BreakPtr analysis;
Median resolution <300 bp

No improvement in accuracy with higher resolution
(9nt tiling)

HMM optimized iteratively

(using Expectation Maximization, EM) Korbel*, Urban* et a/-; PNAS (2007) %



Obs. Signal (counts, array intensity)

o ..m Mean-shift-based (MSB)
Segmentation:
|- no explicit model

F oS
[
A'.
'y

N
I

Initial data point
Updated value after one cycle of iteration . 01 V) = (X"

(0’2 V") P

Ifl/:.(;( ) e m/,_(,-(_vl ) mean shift vector

S0

A '
VeV
Final converged value

o
I

| | | | | | | |

| |
Position (S)

(xi) Observed depth of coverage counts (or array signal) as samples from PDF
(m) Kernel-based approach to estimate local gradient of PDF
(yc) lteratively follow grad to determine local modes

Not Model-based (e.g. like HMM)
with global optimization, distr. assumption & parms. (e.g. num. of segments).
Achieves discontinuity-preserving smoothing
[Wang et al. Gen. Res ('09) 19:106] %



Representative Result Showing
Segmentation Based on
Depth of Coverage

MSB is not model
based so can be
applied equally well to
pseudo-signal from
coverage depth as to
CGH arrays

NA11995 (seq. by Sanger, MAQ mapping)
chr 21 (46162500 to 46164711) [Wang et al. Gen. Res ("09) 19:106] g



Looking for
Aberrantly
Placed Paired
Ends

41.
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Normally mapped

reference genome —
g _T 4
! i
(sample) sequence —v—
No SV

End distance < cutoff Ci

'::: l. Py 2 2 *'“:l
Insertion

End distance > cutoff Cd

R ‘ \\ 'l I
\ '
\ \\ ,’ '
'::“ \ \vl ‘I
Deletion

PEMer:
Detecting
Structural

Variants
from
Discordant
Paired Ends

in Massive
Sequencing

[Korbel et al.,

Science ('07);

Korbel et al.,
GenomeBiol. ('09)]
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Marker Marker . .
i circularize O
@ shear into | 1 verall

fragments fragments of length L
DNA of sample
o I Strateqy for
N Analysis of
select for marker | . cleave randoml
— | - - NextGen
N Seq. Data
Next generation DNA sequencing, followed by PEMer analysis to Detect
[1] construct pre-processing [4] outlier-identification l
[2] read-alignment Stru Ctu ra I
[3] optimal paired-end placement Va ri a nts
l [5] outlier-clustering End distance < cutoffCi

. cutoffs
Cluster 1 M different N C: Cy

R cluster sizes \ /
’ A E g N\
R . PR - N
rg ey ’ ’ \ \ HH
H 3 ® " \. L

;.‘l:‘#——-q-*!:] A N -
e , l:' o . > g-
‘I [ - e—— k] Insertion %
Insertion . S o b
End distance > cutoff Cd o §7 =
Cluster 2 :__’

Py
A
v.

[ h—————ant )/ \ \\ 'l Y -
( Deletion \\ \\ 1' l’ 0 5000
m—_—v—.—w di
Deletion m " "Paired-end span [bp] [Korbel et al.,
Science ('07);
. . i Korbel et al.,
[6] cluster-merging [7] Display/storage of final SV set ‘ o GenomeBiol. ('09)]




Parameterize
Error Models
through
Simulation

Reconstruction

efficiency at
different
coverage

[Korbel et al.,
GenomeBiol.

('09)]

Reconstruction efficiency

Deletion size Reconstruction efficiency at

5x coverage by 2.5 kb inserts
1000 3
2000 11
3000 49
4000 80
5000 91
6000 92
10000 88
Total 414
False positives 5

100

/

N
o
1

Size of deletion [kb]
— 1 -2
-—3 — 4

5 6

10

15 20 25

Effective span-coverage

44.



Reconstruction of heterozygous

Insertions

5x coverage by 2.5 kb inserts 5x coverage by 10 kb inserts
Insertion size Reconstruction efficiency || Insertion size | Reconstruction efficiency
250 0 1000 8
500 1 2000 42
750 2 3000 72
1000 1 4000 69
1250 8 5000 61
1500 3 6000 55
1750 3 7000 37
2000 1 8000 23
2250 1 9000 -
2500 0 10000 1
2750 0

3000 0

False positives 4 4

Better coverage and fewer reads allow to relax cutoff on outlier lengths and reconstruct more insertions

[Korbel et al., GenomeBiol. ("09)]
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Optimal integration of sequencing technologies:

Local Reassembly of large novel insertions

Given a fixed budget, what are the sequencing coverage A, B and C that can achieve the maximum
reconstruction rate (on average/worst-case)? Maybe a few long reads can bootstrap reconstruction process.

A

Reference genome [ | . Hﬂ ¢ ——

Elsewhere 1n

- - —
genome 9 =" ] S ) = =3 S rl
| ——
B
Reads s —— [F— —) W) L) esssale) @)
Similar-read Split-read Spanning-reads Split-read Misleading-  Same-
(s ] [ [(~— R ——— read read

\

G Long reads: A-x coverage |

I
! Highly | : | .
: - 2 represented ! | @IS Medium reads: B-x coverage |
i S J regions i :\ @ Short reads: C-x coverage ':
i @  Mismatches ) ¥s========================== ¢

(c) '09

N

Du et al. (2009), PLoS Comp Biol, in press\t



Optimal integration of sequencing technologies:
Need Efficient Simulation

Different combinations of technologies (i.e. read lenghs) very expensive to actually test.
Also computationally expensive to simulate.

(Each round of whole-genome assembly takes >100 CPU hrs; thus, simulation exploring 1K possibilities takes
100K CPU hr)

C Simplification of the simulation to the insertion region only

I Large novel insertion i

1z ] |< rl S r2 >| I

. (I s S S——— - N — ”
I I
I [

(c) '09

o)
Du et al. (2009), PLoS Comp Biol, in press\t



Optimal integration of sequencing technologies:
Efficient Simulation Toolbox using Mappability Maps

C Simplification of the simulation to the insertion region only

I Large novel insertion i
r2 | I< rl S r? >| I )
S I T = o F—

| |

| |

D Compute mapability maps to scale to the whole genome

Count of occurrences of &-mers in the whole genome

~100,000X
speedup

Genomic

TEmmmmmT o 1 | position
E Simulate the reads \
Misleading-read
— ——— Stmilar-read -
Additional Ready] 7™ e p——
from elsewhere —— R L With g
(™~ (70— ) - . 5
-l e o r sequencing
| error
Reads from models
ﬂ/le iﬂsertioﬂ @ [ ;d; I=
Gl ) D) e - -
| Processed by a simplified |
5 4 assembler (illustrated in G) :
F Output after applying de novo assembly to reads from E
N P — '
. g T (o

Small errors False extension Gap Du et al. (2009), PLoS Comp Biol, in press<



Optimal integration of sequencing technologies:
Efficient Simulation using A Simplified Assembler

G Iterative contig elongation with the best supported extension

Current contig(s) G

(™
Overlapping (np
reads =
(P
Current contig(s) GuoGmEmmT
Best overlap w/ current contig
¢, Most supported extension
Current contig(s) Gl y
J
J
Additional ——
M J
overlapping =
reads —
—
Elongate with the best supported extension s
Current contig(s) GaEmEmmmT] N )
[V ]
Reads for the —
ble of
assemble of a -
new contig ()
Current contig(s) GaEmEmmm ] I - L
a——
Output contig(s) GrEmEmmm] N e P — O

Du et al. (2009), PLoS Comp Biol, in pressi)



Optimal integration of sequencing technologies:

Simulation shows power of PEs

Simulation results w/ shotgun & paired-end reads on the same ~10Kb insertion

A

2.88x
2.4x
1.92x

1.44x

0.96x

coverage w/ medium PE reads

0.48x

0x

Mean(recovery rate) _ -
-
-

o

-
-

-
-
-

0x
44x —
.92x —
2.4x

x
o
°’.
o

0.48x

1—. ~—
coverage w/ medium reads
Total cost: $2 on a ~10Kbp insertion(short reads not shown)

2.88x

0.8

0.6

0.4

0.2

0.0

(c) '09

™~
Source: Du et al. (2009), PLOS Comp Biol, in press L)



Optimal integration of sequencing technologies:

Simulation shows combination vetter than single technoloqgy

A Long reads coverage

1

x
<
©
o

/e \

Simulation results w/
shotgun long, medium
and short read
sequencing on a ~10Kb
novel insertion using a
fixed total budget

oy}

coverage w/ short (Solexa) reads
&
x
]

O

coverage w/ short (Solexa) reads
¢

Mean(recovery rate)

<
B
-
0

'. Short reads coverage

I

X X X X x X
¥ © o o i X ©
[SURE- T o

0
verage w/ medium (454Treads

1.0

Min(recovery ratd)

84x

12x

()
=

aage w/ me

4.8x
6
2.

d

x x x
<

ium (454) read

x
©

F N 0 o

0.8

0.6

04

0.2

0.0

Result dependent
on specific
parameter setting
of different
sequencing
technologies

()09

N
Du et al. (2009), PLOS Comp Biol, in press L)



Formal
Annotation based
on Comparative
Genomics:
Pseudogenes

Illustration from Gerstein & Zheng (2006). Sci Am.
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Pseudogenes are among the most
interesting intergenic elements

« Formal Properties of Pseudogenes (WG)
¢ Inheritable
() Homologous to a functioning element
¢ Non-functional*
* No selection pressure so free to accumulate mutations
— Frameshifts & stops
— Small Indels

— Inserted repeats (LINE/AIlu)
 What does this mean? no transcription, no translation?...

[Mighell et al. FEBS Letts, 2000] u‘;



Identifiable Features of a
Pseudogene (yRPL21)

Synonymous
Premature stop codon mutation
AA N V R I E H I B BN SN BN BN (MEN NON RSN RGN B AEe RGN B

RPL21 AATGTGC|G[TATTGAGCACAATAAGCACTCTAAGACGCGAGATAGCTTCCT|GIAAACGTGTGA

WURPL21 AATGTGC/ATATTGAGCACATTAAGCACTCCAAGACG

TGAGATAACTCCCTA/AAAAACATGA
AA N V| H |

()09

E H I BN BN BSH BEN BSN R HIN N BB B BEW S S
Nonsynonymous
mutation
Gross deletion
K E N D 0 K K K E A K E K G T w Vv 0 L K R 0 P A P P R E A H F \ R
AGGAAAATGATCAGAAAAAGAAAGAAGCCAAAGAGAAAGGTACCTGGGTTCAACTAAAGCGCCAGCCTGCTCCACCCAGAGAAGCACA CTTTGTGAGA
IAGGAAAATGATCAGAAAAAG ~~~~~~~~~~~~~~~ |AAA GCCAAAGAGTTCAACTGAAGTGCCAGCCTGCTCTACCAAGAGAAGTCCACTTTGTGAGA

K E N D 0 K K K 0 R \ 0 L K © 0 P A L P R

E \

Base deletion and
frameshift

frameshift

Gerstein & Zheng. Sci Am 295: 48 (2006).

F

\

R

Base insertion and

1
0



Two Major Genomic Remodeling
Processes Give Rise to Distinct
Types of Pseudogenes

Duplication and mutation

icat
Promoter Exon Intron Duplica edlpSGUdOgene
| o B e
GENOMIC  \ l_ o | J_ Ty I S -
DNA ™~ m S S Wy
l : I [ : I
Gene Processed pseudogene

Transcription

Reverse transcription

RNA transcript and mutation

— Processing

mRNA

56
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Distribution of Human
Pseudogenes (for RPL21)
across the chromosomes

E E aRPLZlgene
0
llnii

1 2 3 4 5 6 7 8 9101112131415161?181920212 X Y
Human Chromosome

~no

Gerstein & Zheng. Sci Am 295: 48 (2006).

.GersteinLab.org ¢
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seudogene

Tools:
ssignment

peline & DB

58.
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DNA Sequences of Exons +

Full Length Protein Queries .
(simulate processed Sl g’f”:’"eg R

Wgenes)

Queries of Exon Peptides
(simulate duplicated
Wgenes)

_________________________________ | | \

Pré:cessed Dupiicated

Pseudo

Merge & CIustJ[ P i pe

l Dyn. Prog.
Re-Alignment ¥

Zheng & Gerstein. GenomeBiology (2006). Zhang et
al. Bioinformatics (2006)

59 - Lectures.GersteinLab.org ¢



-

Flat Files €

able Browser

tables.pse

[Lam et al., NAR DB Issue ('09)]

» DAS

dogene.org<—> UCSC

Genome
Browser

fam

* 12 eukaryotic species
* Human, mouse, rat, chimp...
* 100,052 pseudogenes

* 64 prokaryotic species
* 6,412 pseudogenes

28,237 human
pseudogenes total
~23K in

recent pipeline run

* 13+ unique human sets



Domain Ontology

o
o
0
o
o

Polymorphic @ ‘,“-' Mitochondria

Regulatory

Sequence Recognition
Homology Feature

ross-
Intra-Genome Genome
Homology Hamaloa Disablement

Regulatory Premature
Element Lost Stop Codon

[Lam et al., NAR DB Issue (in press, '09)]

Pseudo-
PolyA Tail

Proposed

HAVANA

61-
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Pseudofam Construction

e  Data Generation

¢ Identify pseudogenes by proteins and map

parent proteins to protein families

e Alignment
( Align pseudogene to parent

() Transfer alignment from Pfam

Combine and adjust the alienments to build
0 I g

the pseudofam alignment
e Statistics
( Enrichment

[Lam et al., NAR DB Issue (in press, '09)]

1. Identify

—

- TN TN

Protein family
l 4. Align

Pseudogene N
family 4 Pseudofam

Parent Protein Pseudogene

LIOKARLAEQAERYDDMATCM [TORERLTKO /[AESASDMAT F R

Align

Pfam Alignment

Pseudofam Alignment
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Overall Flow:
Pipeline Runs, Coherent Sets,
Annotation, Transfer to Sanger

Overall Approach « Chronology of Sets

1. Overall Pipeline runs at 1. Encode Pilot 1%
Yale and UCSC, yielding 2. Unitary pseudogenes
raw pseudogenes (Hard)

2. Extraction of coherent 3. Ribosomal Protein
subsets for further pseudogenes
analysis and annotation

4. Glycolytic Pseudogenes
3. Passing to Sanger for 5

detailed manual analysis ' ,
and curation » Totals (May '09)

4. Incorporation into final 0 Automatic pipeline
GENCODE annotation currently gives ~23K
5. Pipeline modification ¢ Manually Annotated ~8K

63



Specific Pseudogene

Assignments

s.GersteinLab.org (s
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Pseudogenes of glycolytic

enzymes
Glucose
ATP—
ADP <—4V F
Glucose 6—£hosphate
GPI Lac}ate |
v LpHE LD
Fructose 6-phosphate V\_’ NADH
ATP Pyruvate
ADP A > ATP
Fructose 1,6-bisphosphate ADP
\ Phosphoerlolpyruvate
: ENO
Glyceraldehyde- 3. Dihydroxyacetone \
3-phosphate phosphate 2-Phosphoglycerate
NAD* GAPDH
1,3-Bisphospho- 3-Phospho-
glycerate ._; ;_. glycerate
NADH ADP  ATP
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Number of pseudogenes for each glycolytic enzyme

Human Chimp Mouse Rat Chicken Zebrafish Pufferfish  Fruitly Worm
HK 1/0 1/2 0/1 - 0/2 - . - -
GPI - - 1/0 - - - - - -
PFK - - - - - 1 - - -
ALDO 1/1 1/1 11/0 710 0/1 - - - -
TPI 3/0 2/1 6/1 31 - - - - -
GAPDH 60/2 47/3  285/46  329/35 0/1 - - - -
PGK 1/1 1/2 2/0 12/0 - - - - -
PGM 12/0 13/1 9/0 3/0 - - . - -
ENO 1/0 1/2 12/1 36/3 - - - - -
PK 2/0 3/0 10/3 4/1 - - - - -
LDH 10/2 o/1 27717 25 . - - - -
Total 97 91 422 463 4 | 0 0 0

Processed/Duplicated

[Jong et al. BMC Genomics ('09, in press)]

(c) '09
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Distribution of human GAPDH pseudogenes
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[Jong et al. BMC Genomics ('09, in press)]
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mMRNA Expression Level

Pseudogene abundance versus mRNA expression
levels

Human
Human
> 8192
i 90
4096-8192
E 80
2048-4006 | *
1024-2048 —————] g7
. £ 60
512-1024 ] F
- >
256-512 | § 30
128-256 ] g 40
-1 o
64-128 S 30
32-64 g 20 +
16-32 [ 10 ’
8-16 0 MM . | ' '
0-8 | 0 500 1000 1500 2000 2500 3000 3500 4000
! ' ' ' ' ' ' ' Total mRNA Expression Level
0 1 2 3 4 5 6 7 8 9

Number of Glycolytic Enzyme Genes
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Using Synteny to Identify syntenic
glycolytic pgenes

Mouse Human Mouse Human
chromosome 2 chromosome 20/ e e e - -
Q no pseudogene — — psaudogene
- 20
- TASP1 TASP?
- GO
g0l ) TN N M
=100
CsT3 CST5
120
=140
160 pseudogene — — pseudogene
L — CsT7 . . CsT7
F1e0 O - GO
\_/ 5 B N

Synteny derived based on local gene orthology
[Jong et al. BMC Genomics (09, in press)]
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Syntenic proc GAPDH
pseudogenes

. Human
64 pseudogenes

(5.4£1.1 mya)
‘ | Chimpanzee

4 pseudogenes
(91+£2 mya)

. Mouse
135 pseudogenes

0 pseudogenes (41£1 mya)
(310 mya) | Rat

F9UL Chicken

[Jong et al. BMC Genomics ('09, in press)]

70



Number of Pseudogenes

Number of Pseudogenes

Q\ Human GAPDH
20 . . .
AU
y | T ) U . S
10 I O
5 I 1 | o
0 M 1
0 50 100 150 200
Millions of Years Old
Mouse GAPDH
80 . ' -

200

0 )
0 50 100 150
Millions of Years Old

Number of Pseudogenes

3

Burst off Age of GAPDH
Refrofran- pseudogenes
spositional

Aclivity

Rat GAPDH

120 %

100 |-
80 |-
60 -
401

20~

200

0 )
0 50 100 150
Millions of Years Old

Age calculated
based on Kimura-2
parameter model of
nucleotide
substitution

[Jong et al. BMC Genomics ('09, in press)]

71 - Lectures.GersteinLab.org ¢



ENCODE Pilot
Pseudogenes:
Integration with Measures of
Biochemical Activity

72
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Intersection of Pseudogenes with

Transcriptional Evidence

TAR/ CAGE DiTag RACEfrag | EST/
transfrag MRNA
TAR/ 105 * 8 2 5 14
transfrag
CAGE 8 1 0 1
DiTag 2 0 0
RACEfrag 14 5
EST/ 21
mRNA [ [] [] ] [ ]

Excluding TARs (due to cross-hyb issues)
Targeted RACE expts to 160 pseudogenes, gives 14

Total Evidence from Sequencing is 38 of 201 (with 5 having cryptic promotors)

Zheng et al. (2007) Gen. Res.
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Integrating Transcriptional Evidence with

Gene Annotation and Sequence Constraints

12 P | T 1

Ka/Ks

>
@

o
-
=
=

T

Processed pseudogene
Non-processed pseudogene
Gene

Transcribed O

Avg. Integration
over many
instances

No Greater
Tendency for

= Transcribed
Pseudogenes to
be under
Selective
Constraint

Need a way of
* easily defining
degree of
constraint on
sequence (not
so easy for non-
coding)

—

-

SNP density

Measurement of Short-time variation (pN+pS)

()09
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Constrained Ll H_+—1
sequence II:H] o |
e . N N B
annotation Overall
Q.| Bases 20% 70% 33% 25%
E 75%
& - Y Y, N Y S
Regions es es O ®®  @outof4)
b
0.9
Bases

Fraction of experimental annotation

0.7

0.5

0.3

0.1

Biochemically
Active Regions
Don't all Appear

0.9 H

0.7

0.5

overlapping constrained sequence

0.3

0.1

[ENCODE Consortium, Nature 447, 2007]

I _!— —!— 1 1 II :IE :F :lE :IE =:=
Regions
I I !
r aE
I =
1 ]l: 1 T I T 1 I T T T
3 £ £ % % 8 g ¥ & § ¢
a £ E & & & T £ ©® % <
o = = (I L S 0 = L o
~ ~ x x o) 1 (7))
o ™ o = o ?
c 3 oc
= D 0
o o
RNA transcription Open DNA/protein
chromatin

to be Under
Constraint

* Integrating &
averaging results
over larger and
larger sets

« Comparison of
integrated
guantities

76-



Grand Summary: Biochemical
Activity vs. Sequence Constraints

Constrained HE — H——

sequence
Experimental

annotation
* Not all constrained sequence All 44 ENCODE Regions

annotated in some fashion (29,998 kb)

« Exactly how things are defined in
terms of overlap?

Non-Constrained > Unannotated

"At the outset of the ENCODE Project, many believed that the broad collection of
experimental data would nicely dovetail with the detailed evolutionary information derived

from comparing multiple mammalian sequences to provide a neat ‘dictionary’ of conserved J

genomic elements, each with a growing annotation about their biochemical function(s). In

one sense, this was achieved; the majority of constrained bases in the ENCODE regions are Other_ENCODE
now associated with at least some experimentally-derived information about function. ExPeT"t‘.ental
However, we have also encountered a remarkable | nnotations
excess of unconstrained experimentally-identified 8% — UTRs
functlonql elements, and .th.ese cannot be d!smlssed Contialiicd

for technical reasons. This is perhaps the biggest 4.9% Coding

surprise of the pilot phase of the ENCODE Project,

and suggests that we take a more ‘neutral’ view of many of the functions
conferred by the genome. "

77-

[ENCODE Consortium, Nature 447, 2007]
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ooooo

Conclusion:
The distinction

between gene and
non-gene Is

becoming less
clearcut
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L . Antisense
T + Ll 5 2 CRt

i

21-nucleotide
SIRNA

RISC

mRNA cleavage

Recent Discoveries in Mouse & Fly

Czech, B. et al. Nature 453, 798—-802 (2008).
Ghildiyal, M. et al. Science 320, 1077—-1081 (2008).
Kawamura, Y. et al. Nature 453, 793-797 (2008).
Okamura, K. et al. Nature 453, 803—-806 (2008).
Tam, O. H. et al. Nature 453, 534-538 (2008).
Watanabe, T. et al. Nature 453, 539-543 (2008).

5 @nﬁu.

Hairpin

What are Active

Pseudogenes
Doing?

Potential for
Gene

Regqulation via
endo-siRNA

[Sasidharan & Gerstein, Nature ('08)]
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Genes & Pseudogenes

(a) Functional Gene Ambiguous Cases (b) Dead Pseudogene

L

Zhenq & Gerstein T|G (2007) (IPromoter I:' Exon [::] Pseudo-Exon I:I RNA % Mutations disrupting protein coding J




Genes or Pseudogenes?

(a) Functional Gene Ambiguous Cases (b) Dead Pseudogene

L

| - l i Transcribed
pseudogene regulates
- 8= parent (NOS)

Zhenq & Gerstein. TIG (2007) [ IPromoter I:'Exon [::] Pseudo-Exonl:I RNA % Mutations disrupting protein coding J




Genes or Pseudogenes?

(a) Functional Gene Ambiguous Cases (b) Dead Pseudogene

(©) (@) (© M ()

L

A processed psetidogene
without disablement

|
[
|
E—
[
| % |

L | A duplicated pseudogene

T with a truncated transcript

l
*
[ %

A pseudogene whose RNAs can A psi:udogene whose decayed A pseudogene whose RNAs can
form a RNA-RNA duplex with DNA contributes to part(s) of a form a chimeric transcript with
mRNAs from its parental gene new horned ncRNA gene mRNAs from a functional gene
(e.g., NOS pseudogene) (e.g. Xist gene)

Zhenq & Gerstein T|G (2007) IPromoter I:' Exon [::] Pseudo-Exon I:I RNA % Mutations disrupting protein coding




summary:

Looking Back Over the Talk

83.
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Overview of the Process of

Intergenic Annotation

« Basic Inputs

1. Doing
looking for repeated or deleted regions

2. Determining experimental signals for activity
(e.g. transcription) across each base of
genome

A. Finding repeated or deleted blocks
1. As a function of similarity (age)

2. vs. other organisms or vs. human
reference

3. Big and small blocks
(duplicated regions and retrotransposed
repeats)

* Results of Processing
Raw Expt. Signals

a.

Signal Processing: removing
artifacts, normalizing, window
averaging

Segmenting signal into larger
"hits"

Clustering together active
regions into even larger

features at different length
scales and classifying them

Integrating Annotations,
Building networks and
beyond....

(¢)'09
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Outline

* Regulatory Sites

a. ChipSeq signal processing to call
puncate "hits"

b. Clustering of hits into broader blocks
and annotating them
» Variable Blocks in Genome (CNVs,SDs)

Ala. Calling them with various signal
processing approaches
« Pseudogenes

A. Pattern-match tools for calling them
A. Focus on one group of
pseudogenes

c. Integrating them with annotations of
transcription and regulation

e Future of Annotation

() What is a "gene" post encode?

85.
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Segmenting the Raw "Signal”
from Next-generation Sequencing into
Usable Annotation Blocks

» PeakSeq

() Scoring chip-seq expt relative to input control
() Simulating chip-seq expt anticipates & allows correction for non-uniformity

86-



First-Pass Annotation Clustering and
Characterizing Novel Transcribed Regions

and Groups of Binding Sites

» Deserts and Forests
of Binding Activity
() on ~50kb scale
¢ Biplot gives broad
separation of seq. specific
and non-specific factors

and associated genomic
bins
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Signal Processing #2:
Identifying Structural Variants in Human

Population
* BreakPtr « PEMer
() Model-based segmentation () Detecting Variants from
using bivariate HMM discordantly placed paired-
. MSB ends

() Simulation to paramaterize

¢ Mean-shift segmentation He
statistical model

approach following grad. of

PDF  ReSeqSim

() Equally applied to aCGH and () Efficiently simulating
depth of coverage of short assembly of a representative
reads variant

() Shows that best
reconstruction has a

combination of long, med.
and short reads
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Annotating the Human Genome:
Integrative Annotation of Pseudogenes in
Relation to Conservation, Transcription, and
Duplication

» Glycolytic pseudogenes

« Pseudogene Assignment Y
() Great variation in number,

Technology .
0 Pipeline + DB with GAPDH the largest
0 Ontology () Synteny & dating shows most
GAPDH ones are recent,
() Pseudofam analysis of resulting from
Psiludogene Families, highlight retrotranspositional bursts
o4 I,ers » Pseudogene Activity
* Annotation of Human Genome 0 >20% appear to be
. . . (0]
<> ilpellne I‘(?ra'ﬁ: (ZOK) + Hybrld transcribed (38/201)
pproac

() No obvious selection on
transcribed ones
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More Information on this Talk

TITLE: Human Genome Annotation

SUBJECT: GenomeTechAnnote

DESCRIPTION:

The ninth international conference for the Critical Assessment of
Massive Data Analysis (CAMDA 2009), 2009.10.05, 10:00-10:50;
[I:CAMDA] (Long GenomeTechAnnote talk, building on [I:UCSC] with
some subtractions and a first time addition .)

(Works equally well on mac or PC. Paper references in the talk were mostly from
Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each
topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic can be looked up at

http://papers.gersteinlab.org/papers/ )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).
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PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see

http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily
queried from flickr, vizz http: //www. flickr.com/photos/mbgmbg/tags/kwpotppt
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