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2001: Most of the genome is not coding (only ~1.2% exon).
It consists of elements such as repeats, regulatory regions,
non-coding RNAs, origins of replication, pseudogenes,
segmental duplications....What do these elements do? How should

[THGSC, Nature 409, 2001]
they be annotated? [Venter ct al. Science 29, 2001] -

Lectures.GersteinLab.org ¢
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ENCODE Special Issue

How to be top
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2007 Pilot results from ENCODE Consortium on

decoding what the bases do

- 1% of Genome (30 Mb in 44 regions)

- Tiling Arrays to assay Transcription & Binding

- Multi-organism sequencing and alignment

- Careful Annotation [IHGSC, Nature 409, 2001]

- Variation Data [ENCODE Consortium, Nature 447, 2007] .
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Different Views of the
Function of Junk DNA

[NY Times, 26-Jun-07]

ESSAY

Human DNA, the Ultimate Spot for Secret Messages (Are Some Th

By DENNIS OVERBYE

his is the ¢

If 'Li}bi'trt‘h'l'ill'rll‘ can be encoded Using the same code that computer keyboards use, the
ooy Lo ceachebaun Japanese group... wrote four copies of Albert Einstein’s famous

be archives, why not us?

formula, E=mc2... into the bacterium’s genome... In so doing they
have accomplished at least a part of the dream that Jaron Lanier,
a computer scientist and musician, and David Sulzer, a biologist
at Columbia, enunciated in 1999. To create the ultimate time

.. | capsule as part of the millennium festivities at this newspaper,
™| they proposed to encode a year’s worth of the New York Times
s | magazine into the junk DNA of a cockroach. “The archival

Institute in San

reiplpin cockroach will be a robust repository,” Mr. Lanier wrote, “able to

)y an alien

KRt ongasonsd shat i asarch survive almost all conceivable scenarios.”

intelligence, or SETI, should look in-

ntist,
ersity, sections of junk DNA seem to be markedly resistant to

enunc
as part of
they propc
Times ma,

DNA broadcast thre

rish. It’s the dark nce
ow what it is saying tc within
that sea of megabytes there is plenty
Imagination to roam, for trademark much for ext
more. The King James Bible, to pick ard
ple, only amounts to about five mega

Starubaritast

d. In an article in Ne
Paul Davies, a cosmologist at Arizona State Univ
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How might we

annotate a

human text

I_T

?

Coloris
Function

Lines are

Similarity

[B Hayes,

Am. Sci.

(Jul.- Aug.

'06)]

Ir YOU WANT TO 1% a thorough-

leam 6,912 ways to say “Where is the
please?” That's the number of

It you want to be the complete poly-
glutl programmer, pou also have quite
a d’u 153 of you, leaming all

oooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooo

by Bill lummln of thc University of

golng. world. traveler you need. 1n.

Kansas lists about 2,5 programming
languages. Another survey, comp
by Diarmuid Piggott, puts the total
even higher, at more than 8,500, And
keep in mind that whereas human lan-
guages have had millennia to evolve
and diversfy, all the computer languag-
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we've
been inventing one language a week,
on average, ever since Fortran

For ethnologists, linguistic diversity
ks a cultural resource to be nurtured
and preserved, much like biodiversity.
All human languages are valuable; the

Brian Hayes

Every|programmer
knows there 1s one
trud programming
language. A new one
every week

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There are| programmers pf my ac-
quaintance who will dspute that Last
statement. [ expect to hear from them.
They will argue—zecalously, ardently,
vehemently—that we have indeed
found the nght| programming| lan-
guage, and for me O Claam otherw ise
is willful ignorance. The one true lan-
guage may not vet be perfect, they’ll
concede, but it’s built on a sound foun-
dation and solves the main problems,
and now we should all work together
to refine and improve it The carch, of
course, is that each of these friends will
favor a different language. It's Lisp,

he Semicolon Wars |

cide which end of a botled egg to crack
Thas famous tempest in an egg cup was
replayed 250 years kater by designens of

computer hardware and commusuca-
tions protocols. When a block of data is
stored or transmatted, cither the lease-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if evervone made the same
choice. But that’s not what has hap-
pened, and so quite a ot of hardware
and software l?:k\\i?d just to swap
ends at boundanes between svstems.
This modern echo of Swift's Endian
wars was first pointed out by Danny
Cohen of the Unaversity of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace”
The memo, subsequently published
in Compneer, was vndch n-od and ad-

ﬁmud g«el\ uq;u%.
think, but never settled by truce or

treaty—focused on the semicolon. In

have to be separated by semicolons. For
('\o\"\p‘('.ll\xole Yizxel; 122 the
sermscolons sl the com where one
staternent ends and the next begines. C

programes are also peppered with semi-



Overview of the Process of
Annotation of non-coding Regions

« Basic Inputs

1. Doing large-scale similarity comparison,
looking for repeated or deleted regions

2. Determining experimental signals for activity (e.g. transcription)
across each base of genome

* Results of Analyzing Similarity

Comparison

1. Finding repeated or deleted blocks
1. As a function of similarity (age)
2. vs. other organisms or vs. human reference

3. Big and small blocks
(duplicated regions and retrotransposed repeats)



CNV Blocks

Fixed Blocks (SDs vs. Mouse)
in Human Population _

_ T——a( 'Y Mouse Ref. \\
i Fa— \
{ \
| ) \
g 1 g [ B E nwman mes.

'\

5 [j " Mouse Ref.
Variable | |
Elements 28 |HE 5 o

CNVs, SDs, B o

f ) Human Ref.
> )
Dupl. Genes, —
Pseudogenes Ancestral Dupl. Dupl.
Gene Gene Pseudogene
in SD
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Overview of * Determining experimental

. signals for biochemical
Annotation activity (e.g. transcription)
Process across each base of genome
() Development of Sequence (and Array)
Technology

* Normalizing & Scoring Signal,
Correcting Artifacts, Segmenting to
create Small Annotation Blocks

¢ Output of Production Pipelines and

Surveying a Single Type of Annotation
on a Large-scale

» Clustering Small Blocks into Larger
Ones, Surveying

¢ Integrated Analysis Connecting
Different Types of Annotation

(c)'09



Technologies used for Interrogating the

Human Genome, over the past 6 years:

Reading out "active" or "tagged" regions

Tiling Arrays
‘02 —
800 bp PCR Products
1
04 36mer Oligonucleotide Array
Massively Parallel Sequencing
1
06+ l / AGTTCACCTAAGA...
. | =) CTTGAATGCCGAT. ..
| GTCATTCCGCAAT...

Application in a
variety of
contexts:

Transcription
Mapping

DNA binding (inc.

chromatin struc.)
Replication

Structural
Variation

10.-



Plummeting Cost of Sequencing

1000000000 -
100000000 - e Original Data: Memory cost: $/Mbyte
7 o "Original Data: CPU cost: $/MFLOP"
10000000 - A Original Data: Sequencing cost: $/base-pair
1000000 - —Fitto CPU
——Fitto Mem. Cost
100000 - —Fitto Seq. Cost
10000 -

1000

100

10

1

0.1

0.01
0.001
0.0001
0.00001
0.000001

0.0000001 T T T T T .
1980 1985 1990 1995 2000 2005 2010

[Greenbaum et al., Am. J. Bioethics ('08)]

(©)'09
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Outline

 Signal processing to call "Blocks"
() Calling Punctate Blocks (ChipSeq)
() Calling Broader Blocks (CNVs)
 Clustering "Blocks" into larger regions
¢ Binding Sites

« Annotating Copied Regions in the
Genome

¢ SD and CNVs
() Pseudogenes

* Integration of Pseudogenes with Other
Annotations

* Future of Annotation

() What is a "gene" post encode?

12.

()09



Signal Processing:
Normalizing Signal and
Finding Initial Annotation

Blocks ("Hits")

13 - Lectures.GersteinLab.org ¢



Representative Signal
from Chip-Seq

STAT1 ChIP-sequencing signal profile map on human chromosome 22 16 uniquely mapped sequence reads and
their directional extension in a tag cluster
| 20000000 | 25000000 | 30000000 | 35000000 | 40000000 | 45000000 | N
97 . :_
1 ks st h
Overlap
identification
48650000 | 48700000 | 48750000 |
12 |

Overlap profile

-12

UL UL l ! u_“i_ .l_Llll IUi

AU ARTAE 1 1NN IS

[Robertson et al., Nat. Meth. ('07); Zhang et al. PLOS Comp. Bio. ('08)]
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ChiIP-Seq vs Input DNA Control

* * *
80
Pol Il ChIP-Seq
;,;.um.‘.u...._x... i nalh i Ll TR DR TP AT ...nJ TV 1T TR T WY NPT TR PTRYRPT SR TP TR TN n....m].l. PP SVINTY T TF 1 TN DO i s b i ek b IR TE IR N RN WP WY VY
) Input DNA
bt FYRATI RPN VR FRYNTUSPTITEY WU T ..M...il...lnn.l....h.u..dh ol dadad i ..‘.-....u...‘u_m....nu..L.........J‘m.‘.m. Juu..ﬂnlﬂ.l.mm.ldlt...l.uu..lu....l.l.u.h.)l.slhu admsitid s dibtab ks M.dal.nl‘hd.m askll b e bt bt il didin
Interferon-Y stimulated STAT1 ChIP-Seq
.;,'\..,A.u_..l.l........l._....‘ - ..uLu.H...L..,J‘.x sl ,.A.n_......lm.....l_, FRVRETLY WTAPAPITY VAT UPPRRUPR I [N T BP ¢_.....‘.u‘u........|m...n.. ..uJImlL.MJﬂ.JlmJ.JA.MML.A.LJIJllm,. VTN TR I ..JH-ALILI..-LA..L.LLM PR Lk Disiaideatist
100
Interferon-Y stimulated Input DNA
3..-J...s.uI.H...n]....u...u.l.‘m.uldu.u.l.‘.u.‘.‘.h.-..u‘ .nu‘h‘hmn“.dﬂl FAPTO T RPTOY FTI P17 TORRRPRIORY T T L.Au.nln-mllh. ..m....h;.n.;m..n;..md.._g.a...l....u..l.x.a.ﬂ....ln T T N T I TY | TP OF T P o T TR T JR T TR WITI 7Y
[ A :
Mappable Bases (1Kb)

EP300

000 19,500,000 39,520,000 39,540,000 39,560,000 39,580,000 39,600,000 39,620,000 39,640,000 39,660,000 19,680,000 19,700,000 39,720,000 39,740,000 39,760,000 39,760,000 39,800,000 39,620,000 39,840,000 39,860,000 39,880

ARl

SLC25A17 ST13

XPNPER3

I i’ RBX1
S o H—HH

[Rozowsky et al. Nat. Biotech ('09)]

(©)'09
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Genome / Genomic region

UCSC gaps and repeats definition w

Remove gaps and repeats Corre Cti ng
Chip-seqg Signal by

||

.

(=

Simulating a Non-
Randomly place binding sites uniform Genomic

| H

' Background

Jwround weight distribution \ﬂ

Add sampling weights to background

I . N L " . We developed in silico ChIP
Inter-site weight distribution SequenCing’ a CompUtationaI
\ﬂ Add sampling weights to binding sites m eth Od tO Simulate the

_ experimental outcome.

R o . m P
.I"H“‘I. ISR WEIght pIedio \ﬂ Redistribute sampling weights in binding sites
| N i | | N
ﬂ Place sequence tags

I . ] i [

[Zhang et al. PLoS Comp Bio. ('08)]

(©)'09
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Ll Threshold PeakSeq: Scoring

i | TR T T W |

el [ Potential T: t Sit
amprmrrr e N Relative to Controls

i [ |
- | Mappability Map !
O GRAMDA TBC1D22A
e, A
i | it | HiHH -

CELSR1 CERK J

) Filter for Potential
Targets based on
"Mappability"

ChIP-Seq Sample
Simulation

»l- (TR Y | NPT T SYTEY NPT PP

| | | T I
Potential Target Sites

Input DNA

MLM.LL. sl Jmlllm kbl g m mL,JL | ST T P P P Y CTTE FYPUN T TP oo S0 [ PRV TR o Y |

Scale Input
Relative to
ChlP

[Rozowsky s s
et al. Nat. a
Biotech & =0
('09)] 5 Slope =1.24
R2 =0.71 Score
Input DNA Relative to
Bionomial
Enriched Sites Expectation

@
~



35000

% Number of
R Reads for
// // Saturation

5000

Number of Targets

# Binding Sites

(0] 5 10 15 20 25 30

Depth of Sequencing (million reads) e pt h

27.5
25.0
225
20.0
17.5
15.0
125
210.0
7.5
5.0
2.5
1.0

|
Pol Il ChIP-Se
. ...;L..Jh 1Y T Y ‘.....AA.MLM‘A...‘“......A.......‘.hu.‘..m....mmj..-.....u.l.nmm.._.n_dn..¢~,‘A...L. - JA RNV TP RPN q

Depth (millions)

Sequenci

; Input DNA
.u.J....L.MLMLA.“,.;.LmL TR Y 1T YR URTY TUT U THRPTIOURIS YR TINTIR T PP GTIAIeT €1 W GTPFTRTT FOPRTTOY T JP0T AT T RPN ATPTOIo oS RRY

neo

A0TE0,000  A07E0000  40.300.

L i H-+——1R |
NAGA TCF20 NFAM

[Rozowsky et al. Nat. Biotech ('09)]

S0320.000  S0830000  AORG0000  S0R30,000 40000000 A0020000 40940000 40060000 40955000 4LO00000 41020000 41040000 41060000  4LOSOO00  ALIOOO00  S1120000  41L180000  4LIG0SOS  4LIBOOO0 412
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Signal Processing 2:
Finding Variable Blocks in

the Human Genome

22 - Lectures.GersteinLab.org ¢



Detection of Block Variation in

Personal Genomics

* Main steps in
Human Genome
Resequencing
() SNP detection
) Haplotype phasing
() Determing small

indels

() Reconstructing
Large Structural
Variants
(most challenging)

* Different Techniques for
SV Reconstruction

() Segmenting Arrays and
Sequencing Read-depth

() Discordently placed
paired-ends

(¢ Finding split reads

¢ Doing small scale

reassembly in presence
of repeats

23



* To get highest resolution on
breakpoints need to smooth &

BreakPtr HMM segment the signal

» BreakPtr: prediction of
breakpoints, dosage and cross-
hybridization using a system
based on Hidden Markov Models

2 0.5 5
£ o _ . o
[SE] = A
2% o WFW o
o ©
S O >
i -0.5 a
DNA ACGTGACAC ATAAGCACACCA ATTGCTTGAGGGACCT |TAGGGCACAGT TAAC ATGATAAGCACACCA ATTGCTTGAGGTGAC ‘E:
sequence NOTTO SCALE *=
R
( £
L)
re)
¢ —a— &
M3z
>3
N )
o
N
Gain I 3
Normal —. -
1 1 [}
®©
=
©

Korbel*, Urban* et al., PNAS (2007) http://breakptr.qersteinIab.orqu';l




High resolution of tiling arrays allows statistical
integration of nucleotide sequence patterns

LYCILRENERN 22p13 22012 pl112 Wl 22q1127 1) 123 B2 2 2 I 22013, R NER] 2241331

experimental 1D: 38792
T T

>4-fold enrichment of the

— e breakpoints of copy number
— . — s 2 variants near segmental

] Wittt rr— duplications (SDs)

_ N S ot [e.g. Sharp et al., Am.J. Hum.
T b Genet. 2005; 77:78-88].

experimental I0: 36338
T T

e intensity log2-rations [individual versus control pool]

oresenc

Flr

| | experimental 10:33241
T T T T T T

T
| | Chromosoma | position

15000000 000000 25000000| 30000000| 35000000 40000000 45000000|
self chain [[Hl L) R I [ i1
[score cutoff |
=100,000)

(©)'09
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BreakPtr statistically integrates array signal and DNA
sequence signatures
(using a discrete-valued bivariate HMM)

Array values

Sequence

Transition A Transition B

Duplication re————- Normal :

Transition A’ Transition B’

Korbel*, Urban* et al., PNAS (2007) o



‘Active’ approach for breakpoint identification: initial scoring
with preliminary model, targeted validation (with sequencing),
retraining, and rescoring

/\ sD

4

500

normalized fluorescent
intensity log,-ratios

400

Breakpoint
validation

-~ 1003

— [intermediate B]

[sequencing

300

304
10 —[intermediate A] |-

parameter
estimation

Training data

Maximum number of parameters per transition state
200

100

Parameter
optimization

Gold standards

()09

| 1
0.0 05 1.0 15 20 25 3.0
Iogm (number of CNVs available for parameter estimation)

CNV breakpoints sequenced in ~10 cases following BreakPtr analysis;
Median resolution <300 bp

No improvement in accuracy with higher resolution
(9nt tiling)

HMM optimized iteratively

(using Expectation Maximization, EM) Korbel*, Urban* et a/-, PNAS (2007) ([:]



Obs. Signal (counts, array intensity)

|, M Mean-shift-based (MSB)
e Segmentation:
L no explicit model

A Initial data point
Updated value after one cycle of iteration ) (.I'SL y", ) = (-\'si. x")

0’22 - .
mi.o(v,) e my.. ;( ), ) mean shift vector

AV

A '
Veyd
Final converged value

| | | | | | | |

| |
Position (S)

(xi) Observed depth of coverage counts (or array signal) as samples from PDF
(m) Kernel-based approach to estimate local gradient of PDF
(yc) lteratively follow grad to determine local modes

Not Model-based (e.g. like HMM)
with global optimization, distr. assumption & parms. (e.g. num. of segments).
Achieves discontinuity-preserving smoothing
[Wang et al. Gen. Res (in press, '08)] a



Representative Result Showing
Segmentation Based on
Depth of Coverage

MSB is not model
based so can be
applied equally well to
pseudo-signal from
coverage depth as to
CGH arrays

NA11995 (seq. by Sanger, MAQ mapping)
chr 21 (461 62500 to 46164711 ) [Wang et al. Gen. Res (in press, '08)] &\



Normally mapped
f <€ >
reference genome
_T ?—

(sample) sequence v

No SV

Eng distance < cutoff C

PEMer:
Detecting
Structural

Variants
from
Discordant
Paired Ends

in Massive
Sequencing

[Korbel et al.,

Science ('07);

Korbel et al.,
GenomeBiol. ('09)]

33.



shear into Mirker MM circularize
> 4 Overall
DNA of sample fragments fragments of length L Str t f r
genome a eg.y o
TN Analysis of
"',a'ke' select for marker . cleave randomly NextGen
THC + i Po-
| 3 i
Marker Marker -~ Seq- Data
/ Nl
Marker Mad!er to Detect
Next generation DNA sequencing, followed by PEMer analysis Structural
[1] construct pre-processing [4] outlier-identification l Variants
[2] read-alignment
[3] optimal paired-end placement End distance < culoffCi
. . -~ le—> different toff
[5] outlier-clustering R 7% clsterszesN , O,
AN \f, d
Cluster 1 . Insertion ! \ i
End dstance > cuteff Cd 2
R A > 24
irn A < > e
L - | n T K J T g S
Insartion Deletion L
Cluster2 Allered end arentation
R A R _r._l Eﬁ'__” | A e [Korbel et al.,
e HE N Science (07);
T Deleton R —— L Paired-end span [bp] Korbel _et al.,
GenomeBiol. ('09)]

[6] cluster-merging

[7] Display/storage of final SV set o

* Rh-ln. nﬂ

34 - Lectures.GersteinLab.org ¢



Simulation strateqgy

>
. Mark . .
shear into Marker " circularize

DNA of sample fragments fragments of length L
genome

cleave randomly

“m- < P
Markler Marker
Mark|er Markler
—)  Simulation
NextGen sequencing [Korbel et al., > Experiment

GenomeBiol. ('09)]

35-



Reconstruction

efficiency at
different
coverage

[Korbel et al.,
GenomeBiol.

(‘'09)]

Reconstruction efficiency

Deletion size

Reconstruction efficiency at
5x coverage by 2.5 kb inserts

1000 3
2000 11
3000 49
4000 80
5000 91
6000 92
10000 88
Total 414
False positives 5

100 ~

(6}
o
1

/

Size of deletion [kb]

= -— 2
-3 -— 4
5 6
10
o I
5 10 15 20 25

Effective span-coverage

36-



Reconstruction of heterozygous

Insertions

5x coverage by 2.5 kb inserts 5x coverage by 10 kb inserts
Insertion size Reconstruction efficiency || Insertion size | Reconstruction efficiency
250 0 1000 8
500 1 2000 42
750 2 3000 72
1000 1 4000 69
1250 8 5000 61
1500 3 6000 55
1750 3 7000 37
2000 1 8000 23
2250 1 9000 4
2500 0 10000 1
2750 0

3000 0

False positives 4 4

Better coverage and fewer reads allow to relax cutoff on outlier lengths and reconstruct more insertions

37.-



Local Reassembly of
Structural Variants

* |dea
() Works for long reads
¢ Not proven to be possible for short reads

¢ Maybe small amount of long reads could be used to bootstrap
re-assembly process

« Simulations
() Expensive to test; very computational expensive to simulate

+ Each round of whole-genome assembly takes >100 CPU hrs; thus, simulation exploring 1K possibilities
takes 100K CPU hr

() Developed tool box for simulating reconstruction process with
different combinations of long, medium & short reads (and
arrays)

{ Find optimal low-cost combination with given parameters

38



Optimal integration of sequencing technologies:
Reconstruction of large novel insertions

Given a fixed budget, what are the sequencing coverage A, B and C that can achieve the maximum
reconstruction rate (on average/worst-case)?

Problem
A
Reference genome | _
Elsewhere in =7 7=
Target  the genome =" 'Lafge novel insertior ~ . Elsewhere in the genorne
genome ) k >_|

[Ebhﬁ——ﬂdi—-ﬁ

B
Reads @D [ — [ — ) ) ———— )
Similar-read Split-read Spanning-reads Split-read Misleading-  Same-
(o T D G G G read read
(R r————————— Ry - -
gE=E=E=EE=SSssS=SsEs==ss===EE = \\ g EEEEEEESEEEESEESEEEEESEESEESEE=E=E==E RN
|I [ rl 1 |' | Long reads: A-x coverage ‘|
I 2 Highly : | _ 1
! [ represented | | — Medium reads: B-x coverage !
| cm— J regions I | @ Short reads: C-x coverage :
1 ! \ 1
\ @  Mismatches ,' ¥z========================= ¢

Du et al. (2009), PLoS Comp Biol, in press



Optimal integration of sequencing technologies:
Efficient Simulation

Focus on the insertion region only

Simulation
C Simplification of the simulation to the insertion region only
I |< Large novel insertion i
7 I all i) r2 >| ]
= e — | ]
| I
| [

Du et al. (2009), PLoS Comp Biol, in press



Optimal integration of sequencing technologies:
Efficient Simulation using Mappability Maps

Simulation
C Simplification of the simulation to the insertion region only
I I< Large novel insertion )I I
2 | rl S r2 | S
e —— —
I |
| I

D Compute mapability maps to scale to the whole genome
Count of occugrences of &-mers in the whole genome

, ’ \ posttion
E Simulate the reads ‘ \
] [ : ‘
¢ ; Mistleading-read Stmilar-read -
Additional Reads amered -
;) ) Il .
from elsewhere - @ ) ; With
- e sequencing
error
Reads from models
the mnsertion o —
G e (] ] —

: Processed by a simplified assembler based on
i read locations and mapability values, with contigs
extended by the best overlapping reads

F Output after applying de novo assembly to reads from E

\ﬁ
- ~
~ ” - o

Small errors False extension  Gap Du et al. (2009), PLoS Comp Biol, in press




Tremendous Speedup

Genome Size

3Gb

Sequencing coverage

10X

Novel Insert Size

10 Kb

(Avg) Read Length

50 bp

3 (== |o

Avg. mapability of sub-seq.

in insert

3

Number of reads generated for the
reconstruction of a novel insertion

Whole genome
sequencing + hybrid
assembly

O(Gc/R)

Simulation w. mapability
(Just using insertion)

O(Icm/R)

Reduction in complexity

(fold)

~100K

(c)'09
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Optimal integration of sequencing technologies:

Simulation shows power of PEs

Simulation results w/ shotgun & paired-end reads on the same ~10Kb insertion

A

2.88x
2.4x
1.92x

1.44x

ge w/ medium PE reads

0.96x

covera

0.48x

0x

Mean(recovery rate) _ ~ ~
-

-
-

-
-

0x

I |

x x x x x
© © < I\ <
< < < o Qi
o o

1—. ~—
coverage w/ medium reads
Total cost: $2 on a ~10Kbp insertion(short reads not shown)

2.88x

0.8

0.6

0.4

0.2

0.0

Source: Du et al. (2009), PLOS Comp Biol, in press
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Optimal integration of sequencing technologies:

Simulation shows combination better than single technoloqy

oy}

coverage w/ short (Solexa) reads
&
x
]

A Long reads coverage

1

0.67x

N

5 \

Medium reads coverage

O

coverage w/ short (Solexa) reads
¢

Simulation results w/
shotgun long, medium
and short read
sequencing on a ~10Kb
novel insertion using a
fixed total budget

Mean(recovery rate)

96x

84x

84x

12x

coverag

A _ Short reads coverage

xxxxxx

< )
e w/ medium (454| reads

x
© o © & <
N ©

-
-

Min(recovery ratq)

xxxxxxxxx

1.0

0.8

0.6

Result dependent )
on specific s
" parameter setting
05 of different
sequencing
06 technologies
0.0 "

Du et al. (2009), PLOS Comp Biol, in press
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TRE

analysis on the micro-

MACRO-GENOMIC SCALE

(Chromosome analysis)

genomic scale

MESO-GENOMIC SCALE

(TREs distribution MICRO-GENOMIC SCALE

analysis) (Promoter assay and

TSS validation)

—

S

Chromatin structure

Y =

o)
7:5‘3,770’ er
)

JL((J( Transcriptional

regulatory elements
(transcription factor binding sites
and histone modifications)

[Zhang et al. (2007) Gen. Res.]

48.
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Clustering Binding Sites at ~50kb
resolution

MESO-GENOMIC SCALE

(TREs distribution
analysis)

gb\) )\/“

Transcriptional
regulatory elements
(transcription factor binding sites
and histone modifications)

[Zhang et al. (2007) Gen. Res.]

)
w
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Landscape of

ENCODE

Transcriptional

Requlatory

Elements

* Analyzed 105 lists of

transcriptional

regulatory elements

in the encode
regions

29 transcription

factors, 9 cell lines,

2 time points
ORNA Pol2

(¢ Histone modifications such

as Ac & Me
()Core promoters

¢ Promoter proximal
elements

( Others such as

enhancers, silencers,
insulators, & response

elements

(CFTR ENm001 et hR s e
rterieukin] ENm002 k-t
{Apo] ENmOG3 - Hirf-rrrrber
(Chr221 ENm004 et hbr—brr—rr—rd s i
(Chr211 ENm005. 4 i HrHHrt oo ik e
(OnrX ENmo08 Lkl A M b H—r—
(Chr191 ENmO07 ikt
[o—globin] ENm008  Y-HiHHHM— b

Zhang et al. (2007) Gen. Res.

ENr112 —. L L

ENr113

ENr114 | 1| L

|| |
ENr211 ———1— T

ENi212 — -t

| L1 1y
ENr213 ——— | T

EN311 it
ENa2 (Ll

|
ENr313 T Tt

[B-globin] ENm009 1 o -
[HOXA] ENm010 i
[IGF2/H19] ENMOT1  — bl 1h L L
[FOXP2] ENm012 s r—r——1
[7921.13] ENmO13 e ———fr— i e
[7931.33] ENm014 e i
ENr 11—t ENr21 — i

ENM22 ot —r i
ENM23 it

EN221 i

111 11 [
ENr222 LI LI TITT

ENr223 ittt

ENr321 - rirrfumlrmhob——ior
ENr322 i it
ENr323 i —
ENr324. bt —

Ly
ENA3T e

ENA132. it b
enr1s3 ikttt

enst el sk b
eN232 Tttt
en2s3 Hr—f b

ENr331 syttt —mrr
ENr332 —rrrnrr—fritirik il
ENr333  -lr—r-nt-mrr—rad -t
ENr334 il

1 500000

I
1000000

I
1500000 bp



Collect Total Hits for Each Factor in ~6000 Bins of 10 to 100 kb

and Compare to Random Control

Nucleotide positions in the ENCODE regions

1 ~30 Mb

—_
=
I
|

000000111111000000111111 ‘

105 [~ -

ChIP-chip expt. tracks

Data matrix

Sliding-window
transformation

Genomic bins in the ENcODE regions

@ 1 5996
s 1

B | e, E
_.5:- .....................................................
2
(0]

= U
s | |
1 3000 0 0 2000
o

= 105

O

Count matrix A
Zhang et al. (2007) Gen. Res.

Track 1 —— —_ e _

Track 2 __ — ——

@ Binary coding

001111:11100000111100000000011 11001 110000
Track 1 " —— — —

! : : i
Track 2 OOOOOOE‘I 1111000000000111100000000001 1111110

Track 1 —— —_ —_ -

(c)'09

Track 2 __ — ——

Track 17 —— o — —_
Track 2’ —_— — _—

51.



Non-random distribution of TREs

TREs are not evenly
distributed throughout
the encode regions (P <
2.2x10716),

The actual TRE

distribution is power-law.

The null distribution is
‘Poissonesque.’

Many genomic
subregions with extreme
numbers of TREs.

Zhang et al. (2007) Gen. Res.

Number of subregions

60

50

40

30

20

10

—— Actual TRE distribution
ffffff Random TRE distribution
130-kb subregions
140-kb subregions
150-kb subregions
160-kb subregions

Number of TREs in a subregion

()09
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Local TRE enrichment and depletion:

Annotation

of Desserts and Forests

 Hundreds of TRE
‘forests’ and
‘deserts’ are
identified in
ENCODE regions.

* The entirety of ehd1
on chromosome 11
Is covered by TRE
Islands.

« Some of islands are
located in the
intergenic regions in
the genome.

Cromosome 11 I | 64355000 | 64360000 | 64365000 | 64370000 | 64375000 | 64380000 | 64385000 | 64390000 | 64395000 | 64400000 | = 64405000
TRE Islands — [ 1 [ 1 [ 1 |
Individual TREs BAF155 Il H3Kdme1 Il H3K4me3 Ml Hsac Ml H4ac @ H3ac@  H3ac @l H3ac Ml  H3ac Il
H3K4me2 Il H3ac H3ac Il H4ac Ml  H3ac M H3ac Il H3ac H3ac Il Sp3
H3K4me1 Hdac H3K4me2 Il H3K4me2 [N H3K4me3 Il H3K4me1 H3ac Il TAF1 -
H3ac Ml H3K4me2 NN  c-Myc Il H3ac Il H3K4me2 Il H3K4me3 Ml H3K4me2 Il Sp1
H3K4me3 H3K4me3 Il Hdac Il Hdac [l c-Myc Il H3K4me3 Il
H3K4me1 N H4ac ll  H3K4me1 N H3K4me2 Il H3K4me3 Il Hdac Il
H4ac Il H3K4me2 Il H3K4me1 Il H3K4me1 H3K4me2 I
H3K4me1 Il H3K4me1 Il H3K4me3 Ml H3K4me2 I c-Myc Il
H3ac Il H3ac N H3K4me1 Il Hdac I  H3K4med N
H3K4me! Il  Hdac Il H3K4me3 Il c-Myc
H3K4me1 Il c-Myc Il H3K4me3 Il
H3K4me3 Il Iy« H3K4me1 Il
H3K4me2 Il H3K4me2 Il H3K4me1 Il
H3K4me1 Il H3K4me1 Il H3K4me3 Il H3K4me1 Il
H3K4me3 Il H4ac Il H3K4me2 Il
H3ac H3K4me3 Il
H3K4me2 Il H3K4me2 Il
H3K4me2 Il H3K4me1 Il
Known Genes I jeeeabiisc e iHHHHiHH-aH e EHD 1 mumll] - i }
CDC42BPG EHD1 e L } 4
Cromosome 13 29700000 | 29750000 | 29800000 | 29850000 | 29900000 |
TRE Islands o = O — o O O
o (] 1]
Individual TREs |  Hak4me2 | STAT1 1 H3K4met ]  H3acl P300|  H3K4me2 | Haac I TAF1]  H3acl H3ac I
I Polll H3K4me1 Il H3K4me3 | H3K4me1 | c-Myc | c-Mycll H3ac Sptll H3ac
| H3K4me1 H3K4me1 | H3K4me2 | H3K4me1 | H3K4me3 | H3K4me2|  Hdacll H3K4me1 |
| H3K4me1 H3K4met | P300 | HaK4me2 | H3Kdme2 | H3K4me3 |  H3Kame3 I
| H3K4me2 H3K4me3 | H3K4me1 | H3K4me3 | H4ac | H3K4me2
H3K4me1 | H3K4me1 | H3K4mel I H3K4me2 | c-Myc | H3ac @
Haac Wl Hdac | H3K4meT | TAF1 | sp3 |
H3K4me3 Il HaK4me2 | HisH4 | Polll | TAF1 |
H3K4me2 | H3K4me2 || H3K4me2 | H3ac | Polll |
E2F1 | H3K4me2 | H3K4me3 | HBK4me3 | H3K4me3 |
H3K4me2 Il H3K4met | H3K4met | Hac|  H3Kdme2 |
Hdac | HaK4met | H3ac | Polll]  H3Kdmet | @
TAF1 | HaK4me2 | H3K4me2 | H3K4me3 | e
Polll | H3K4me3 | Polll | H3K4me2 I o
CEBPe | H3K4me3 | HisH4 1 H3K4me I
H3K4me3 | H3K4me2 | HisH4 |
H3K4me1 | H3K4me1 | H3Kdme1 ||
H3ac I H3K4me1 | c-Myc
H3K4me2 | H3K4me2 il H3K4me3 |
H3K4me1 | H3K4me3 Il H3K4me1 ||
H3K4me1 |
Known Genes KATNALT B === ffmmfpmm e ey HMGB1 s
BX647267 1

Zhang et al. (2007) Gen. Res.
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Biplot to Show Overall

Relationship of TFs

and Genomic Bins
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Principal component Vs

c-Myc
H3K4me3TAP| y
— H3ac 443C
H3K4me2 Po = H3K4med--------
—
o - EOF4; LT |
. ca gt :..::\l :
| Y
T - o ___?."'3K27me3
Al | .
|
’
? ”
STATA
Sp3
<
I c-Jun
Senqguence nonspecific factors
UI'J —  Sequence specific factors
BAF155 " BAF170
I [ [ [
-6 -4 -2 0

Principal component V4

Results

of Biplot

Zhang et al. (2007)

Gen. Res.

0.5

0.0

-0.5

-1.0

Principal component V4

 Biplot groups TFs into sequence-specific and

sequence-nonspecific clusters.
() c-Myc may behave more like a sequence-nonspecific TF.

¢ H3K27me3 functions in a transcriptional regulatory process in a rather
sequence-specific manner.

 Genomic Bins are associated with different TFs and in

this fashion each bin is "annotated" by closest TF

cluster

" FH3K27me3

()09
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Analyzing Repeated
Blocks in the Genome

(SDs & CNVs)

56



080907_SD_CNV_Slides_ MBG_CEGS_PMK

SEGMENTAL DUPLCATIONS AND COPY NUMBER VARIANTS ARE
RELATED PHENOMENA AND HAVE BEEN CREATED BY SEVERAL
DIFFERENT MECHANISMS

Intra-species variation Fixed mutations
(differences to other species)

- 00— Fixation | [ ]
- ee— ’ [ 1
- ee— [ 1 [ 1
[ 1 [ 1 1 I
Copy Number Variants (CNV) Segmental Duplications (SD)
L (I;l\lAHlﬁ T 3 8 NHEJ
e on-allelic homologous (Non-homologous-end-
—_— T —— - ; ;
l recombination) JE joining)
. (L)
Flanking repeat by No (flanking) repeats.

(e.g. Alu, LINE...)

~ >

In some cases <4bp
microhomologies

&
|




080907_SD_CNV_Slides MBG_CEGS_PMK

PERFORM LARGE SCALE CORRELATION ANALYSIS TO DETECT REPEAT
SIGNATURES OF SDs AND CNVs

If exact CNV breakpoints are
known, we can calculate the
enrichment of repeat
elements relative to the
genome or relative to the local
environment

Exact match

Local environment

...ATCAAGG

CCGGAA...

@

©)

Survey a range of genomic
features

Count the number of
features in each genomic
bin (100kb)

Calculate correlations /
enrichments using robust
stats

Genomic
bin

- N O =

N = O O

o = O O

o N O =

- O O O
o O = O
- O - O

°| X

Alu

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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080907_SD_CNV_Slides MBG_CEGS_PMK

OLDER SDs ARE MUCH MORE LIKELY TO BE FORMED BY ALU ELEMENTS

e N ( D
* The co-localization of Alu
Alu association with SDs by age elements with SDs is highly
significant.
0.14 0.14
0.13  0.12 * Older SDs have a much
0.09 0.08 higher association with Alus

than younger SDs.

* Hence it is likely, that Alu
elements were more active in
mediating NAHR in the past
(consistent with the Alu burst)

90-92%  92-94% 94-96% 96-98% 98-99% >99%

SD association with subtelomeres

0.092 * Younger SDs are more likely
0.082 to be localized in
0.054 subtelomeres (instable
region susceptible to NHEJ)

0.028 0.031 _0:04

90-92%  92-94% 94-96% 96-98% 98-99% >99%

\\§ / Y,

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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TO A POWER-LAW DISTRIBUTION

Hypothesis Corollary

080907_SD_CNV_Slides MBG_CEGS_PMK

FOCUSSING ON SDS: SDS CAN PROPAGATE THEMSELVES, WHICH LEADS

s

formation of CNVs

l NAHR

e

* SDs can mediate NAHR and lead to the

SD
» F * CNVs can become fixed and then be SDs

* Such mechanisms (“preferential attachment”) are
1 SD + CNV well studied in physics and should leads a very
skewed (“power-law”) distribution of SDs.

l Fixation

2 SDs

3 o
e o
210 o}

8

(=}

“SD selfpropagation”

All SDs
T

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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080907_SD_CNV_Slides MBG_CEGS_PMK

FOCUSSING ON SDS: SDs COLOCALIZE WITH EACH OTHER

Hypothesis Corollary
4
sSD * SDs can mediate NAHR and lead to the
formation of CNVs
» * * CNVs can become fixed and then be SDs
l NAHR
* SDs of similar age should co-localize better with
1SD + CNV each other:
l Fixation ’
2 SDs L Jows
“SD self-propagation”
.

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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ASSOCIATIONS ARE DIFFERENT FOR SDs AND CNVs

CNVs ARE LESS

o ] ASSOCIATED WITH
SD association with repeats SDs THAN THE
GENERAL SD TREND
0.27 0.21 CNV
0.094 0.07 Association
| | | | with SDs
Alu Microsatellite Pseudogenes LINE 0.31
0.11
CNV association with repeats
0.0759 0.0466 0.048
0.0006 | — | >99% SDs*  CNVs
Microsatellite Pseudogenes LINE

--

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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Alu AFTER THE ALU BURST, THE
NAHR SD IMPORTANCE OF ALU
ELEMENTS FOR GENOME
~ LINE REARRANGEMENT
Microsatellite DECLINED RAPIDLY
NHEJ Subtellom.eres
Fragile sites
CNVs H; h\:;unl% ) SDs n sce)IdID %) * About 40 million years ago
1 - (1] w - (1] .
. gh seq-= 17 d there was a burst in -
Fixation Aging (~40Mya) retrotransposon activity
............................................... R —
S stem from that time

0.16] I :

o4l / B * This, in turn, led to rapid
2 012 | sb | genome rearrangement via
S o A NAHR
Zoos ’ * The resulting SDs, could
goos| N 1 create more SDs, but with Alu
& 0.04f l activity decaying, their

0.02r V/ l creation slowed

0O /\7” 16 26 o 3IO — 40 h g
Percent divergence

Alu Burst (40 MYA) [Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 |



Integrative
Analyses:

Annotating
Pseudogenes and

relating them to
functional signals

and measures of
conservation

Illustration from Gerstein & Zheng (2006). Sci Am.
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Pseudogenes are among the most
interesting intergenic elements

« Formal Properties of Pseudogenes (WG)
¢ Inheritable

() Homologous to a functioning element
¢ Non-functional*
* No selection pressure so free to accumulate mutations
— Frameshifts & stops
— Small Indels
— Inserted repeats (LINE/AIlu)
« What does this mean? no transcription, no translation?...

[Mighell et al. FEBS Letts, 2000] g



Identifiable Features of a
Pseudogene (yRPL21)

Synonymous
Premature stop codon mutation
AA N V R I E H I B BN SN BN BN (MEN NON RSN RGN B AEe RGN B

RPL21 AATGTGC|G[TATTGAGCACAATAAGCACTCTAAGACGCGAGATAGCTTCCT|GIAAACGTGTGA

WRPL21 AATGTG|CATATTGAGCACATTAAGCACTCCAAGACGTGAGATAACTCCCTIA/AAAAACATGA
AA N V H | E H | K H S K S R D N F L K S S

Nonsynonymous
mutation

Gross deletion

K E N D 0 K K K E A K E K G T

w v 0 L K R 0 P A P P R E A H

(©)'09

F v R
AGGAAAATGATCAGAAAAAGAAAGAAGCCAAAGAGAAAGGTACCTGGGTTCAACTAAAGCGCCAGCCTGCTCCACCCAGAGAAGCACA CTTTGTGAGA
'AGGAAAATGATCAGAAAAAG ——————————————— JAAA[FJGCCAAAGAGTTCAACTGAAGTGCCAGCCTGCTCTACCAAGAGAAGTCCAACTTTGTGAGA
K E N D 0 K K K 0 R v 0 L K C 0 P A L P R E Vv F v R
Base deletion and Base insertion and
frameshift frameshift

Gerstein & Zheng. Sci Am 295: 48 (2006).

N
©



Distribution of Human
Pseudogenes (for RPL21)
across the chromosomes

1 2 3 4 5 6 7 8 9101112131415181?181920212 X Y
Human Chromosome

~no

Gerstein & Zheng. Sci Am 295: 48 (2006).

.GersteinLab.org ¢
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Two Major Genomic Remodeling
Processes Give Rise to Distinct
Types of Pseudogenes

Duplication and mutation

Promoter Exon Intron Dupllcatedlpseudogene
l ' |
GENOMIC | | | J_ S ST, BB BT

DNA | M = e —— S

[
Gene Processed pseudogene

Transcription

Reverse transcription

RNA transcript and mutation

— Processing

mRNA
Gerstein & Zheng. Sci Am 295: 48 (2006).

69



Overall Flow:

Pipeline Runs, Coherent Sets,

Annotation, Transfer to Sanger

« Overall Approach

1. Overall Pipeline runs at
Yale and UCSC, yielding
raw pseudogenes

2. Extraction of coherent
subsets for further
analysis and annotation

3. Passing to Sanger for
detailed manual analysis
and curation

4. Incorporation into final
GENCODE annotation

5. Pipeline modification

Automatic pipeline currently
gives ~23K
[pseudogene.org]
Chronology of Sets

1. Encode Pilot 1%

3. Ribosomal Protein
pseudogenes

70



Pseudogene
Tools:
Assignment
Pipeline & DB

71-
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| Y I

DNA Sequences of Exons +

(simulate processed 50 bp Overhang on Either
Side

Ygenes)

Full Length Protein Queries

Queries of Exon Peptides
(simulate duplicated
Wgenes)

Processed

Pseudo

Merge & CIustJ[ P i pe

l Dyn. Prog.
Re-Alignment ¥

Zheng & Gerstein. GenomeBiology (2006). Zhang et
al. Bioinformatics (2006)
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o

fam

Collection :: Human Pseudogenes

Human Pseudogenes

‘‘‘‘‘‘‘‘‘‘‘

Flat Files € > DAS

* 12 eukaryotic species
* Human, mouse, rat, chimp...
* 100,052 pseudogenes

* 64 prokaryotic species
* 6,412 pseudogenes

* 28,237 human pseudogenes

tables.psetdogene.org«— UCSC * 13+ unique human sets

Genome
Browser

[Lam et al., NAR DB Issue ('09)]




Sequence
Homology

Intra-Genome
Homology

Regulatory

[Lam et al., NAR DB Issue (in press, '09)]

JEPRTLLLLL Pseudogene LTI
‘_‘--l‘ ~.." --.....
. ., .

o
o

*Unprocessed

.
.
.
N
.
.
.
o
o
D
o
o
5

ndria

Recognition

ross-

Genome .
Homaolog Disablement

Regulatory Premature
Element Lost Stop Codon

Pseudo-
PolyA Tail

Proposed

HAVANA
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Pseudofam Construction

Data Generation

¢ Identify pseudogenes by proteins and map
parent proteins to protein families

Alignment
( Align pseudogene to parent

() Transfer alignment from Pfam

¢ Combine and adﬁlst the alignments to build

the pseudofam alignment
Statistics
( Enrichment

[Lam et al., NAR DB Issue (in press, '09)]

1. Identify

— T

Protein family

l 4. Align
5. Organize
Pseudogene
family

—

=

Parent Protein Pseudogene

LTOXAKLAZQARRYDDMATCH MOKERETKG / AESESD M A T F R

Align

Pfam Alignment

Pseudofam Alignment
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Pseudofam Statistics: Enrichment of

pseudogenes within a family ("Living vs Dead")

Total (10 Eukaryotes)

Protein Families:
Pseudogene Families:
Total Genes:

Total Parents:

Total Pseudogenes:

Pseudogene-to-gene Ratio:

Pseudogene-to-parent Ratio:

Parent-to-gene Ratio:

Human

Protein Families:
Pseudogene Families:
Total Genes:

Total Parents:

Total Pseudogenes:

Pseudogene-to-gene Ratio:

Pseudogene-to-parent Ratio:

Parent-to-gene Ratio:

3,820
2,985
219,662
26,679
102,679
0.47
3.85
0.12

3,486
1,790
34,686
4,218
12,534
0.36
2.97
0.12

Non-pseudogene vs Pseudogene Family

Non-
pseudogene

Family
(21.9%)
Pseudogene
Family
(78.1%)
Non-pseudogene vs Pseudogene Family
Non-
Pseudogene pseudogene
Family Family
(51.3%) (48.7%)

[Lam et al.,, NAR DB Issue (in press, '09)]

76- Lectures.GersteinLab.org



Relationship
between
pseudogenes

and CNVs




Parent genes located in SDs

Pseudogene families and Segmental

Duplications (SDs)

20 T I T T T T T T T T

r=0.41

o
|

—
=
<o

N

' 1 1 1 1
0 10 20 30 40 50
Parent genes of duplicated pseudogenes in pseudogene families

60

Duplicated pseudogenes located in SDs
(%]

50

40

30

10

r=0.69

.
.
| 1 | L | L |

+e9€0000 o
42800000 200
0

0

20 40 60 80
Duplicated pseudogenes in pseudogene families

« SDs comprise ~5% of the human genome but
contain ~18% genes, 46% duplicated pgenes and

22% processed pgenes

» Relative values of correlation coefficients in the plots
above consistent with the observation that SDs contain

more pgenes than parent genes

[Lam et al., NAR DB Issue (in press, '09)]
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ANOTHER FUNCTION FOR PSEUDOGENES: SERVING AS REPEATS FOR

MEDIATING NAHR

-
Processed pseudogene association with SDs by age

0.32 0.28

0.21
0.17

0.11 0.1

90-92%  92-94% 94-96% 96-98% 98-99% >99%

Processed pseudogenes at SD junctions
144

40

p<<0.001

No. of
SDs with
matching

pseudogenes
at matching
junctions

Number of
matching
pseudogenes
expected
at random

_—

Matching pseudogenes

.

Duplicated Segments

[Kim et al. Gen. Res. (submitted, '08), arxiv.org/abs/0709.4200v1 ]
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Pseudogene Set

#2:

Ribosomal Protein Pseudogenes

(Large Number)
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Human

chromosomal location (Mb)

chromosome
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Human
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Number of RP pseudogenes

(identified by pipeline)

Organism | Processed | Fragments Low
confidence

Human 1822 218 212

Chimp 1462 219 160

Mouse 2092 326 413

Rat 2848 343 450

RP pseudogenes constitute the largest family of pseudogenes. Almost all are
processed: There are ~90 clearly duplicated ones in the human genome

[Balasubramanian et al., Genome Biol. ('09)]
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Number of RP pseudogenes

Number of mouse RP pseudogenes
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Number of human RP pseudogenes

140

Number of each
type of human
ribosomal
_protein
_processed
_pseudogenes
appears
unrelated to
expression level
or to number in
mouse

[Balasubramanian et al., Genome Biol. ('09)]
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Syntenic proc pseudogenes

Species1- Species?2

Number of syntenic pgenes

Human-chimp 1282

Human-mouse 6
Human-rat 11
Rat-mouse 394

[Balasubramanian et al., Genome Biol. ('09)]

o)
S0



ENCODE Pilot
Pseudogenes:
Integration of Different

Types of Annotation
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Vast Amounts of
Different Data

Types to Integrate
in pilot ENCODE

Numb. Expt.

* Determining
experimental signals
for biochemical
activity across each
base of genome

« Large-scale sequence
comparison in relation
to the human genome

[ENCODE Consortium, Nature 447, 2007]

Feature Class Expt. Tech.
P Data Pts.
. - Tiling array, Integrated
Transcription annotation 63,348,656
tfa I‘EI:::p?t: Tag sequencing 864,964
Histone
modifications Ting array 4,401,291
22:32::;" QT-PCR, Tiing aray | 15,318,324
_ Tiling array, tag
Se_q_uence sequencing, Promoter | 324,846,018
specific factors assays
Replication Tiling array 14,735,740
Computational Computational NA
= Genomic sequencing,
Compa rative multi- sequence
sequence alignments, NA
. computational
analysis analyses
Polymorphisms | Reseduencing, cory NA

number variation
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representative pseudogenes drawn from 201 total
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Sequence Decay of Pseudogenes,

tely Neutral
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Using phastOdd value to examine

neutral evolution of pseudogenes

most good
candidates
for
studying
mutational
processes

0.35

03 F

0.25

< 015}

01 F

0.05

|

l I

1l

Gene _l

.|r1| ay

a few
non-proc.
PG under

0

phastOdd value

2

. constraint

©
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different types

Connecting

TARSs
(TxFrags) in

Integrative

fashion to

of Annotation

« Single Ex. of
Pseudogene
Intersecting with
Transcriptional
and Regulatory

Evidence

Are integrated
experiments
comparable --
i.e. done on
consistent cell
lines, on same
coordinate sys.,

&c.
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Intersection of Pseudogenes with

Transcriptional Evidence

TAR/ CAGE DiTag RACEfrag | EST/
transfrag MRNA
TAR/ 105 * 8 2 5 14
transfrag
CAGE 8 1 0 1
DiTag 2 0 0
RACEfrag 14 5
EST/ 21
mRNA L] [] [] ] [ ]

Excluding TARs (due to cross-hyb issues)
Targeted RACE expts to 160 pseudogenes, gives 14

Total Evidence from Sequencing is 38 of 201 (with 5 having cryptic promotors)

Zheng et al. (2007) Gen. Res.
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Ka/Ks

Integrating Transcriptional Evidence with

Gene Annotation and Sequence Constraints
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Gene

Transcribed O

Avg. Integration
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instances
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¢ Transcribed
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degree of
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sequence (not
so easy for non
-coding)
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SNP density

Measurement of Short-time variation (pN+pS)
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Zheng et al. (2007) Gen. Res.
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Grand Summary: Biochemical
Activity vs. Sequence Constraints

Constrained
sequence (H3 ] ~H ——
Experimental
annotation
 Not all constrained sequence All 44 ENCODE Regions
annotated in some fashion (29,998 kb)

« Exactly how things are defined in
terms of overlap?

Non-Constrained > Unannotated 2
"At the outset of the ENCODE Project, many believed that the broad collection of 5
experimental data would nicely dovetail with the detailed evolutionary information derived
from comparing multiple mammalian sequences to provide a neat ‘dictionary’ of conserved J
genomic elements, each with a growing annotation about their biochemical function(s). In
one sense, this was achieved; the majority of constrained bases in the ENCODE regions N Other_ENCODE
are now associated with at least some experimentally-derived information about function. 20 mm IE\xPe?T‘ental
However, we have also encountered a remarkable | Annolations
excess of unconstrained experimentally-identified 8% — UTRs
functlonql elements, and .th.ese cannot be d!smlssed Constialiiod
for technical reasons. This is perhaps the biggest 4.9% Coding
surprise of the pilot phase of the ENCODE Project,

and suggests that we take a more ‘neutral’ view of many of the functions
conferred by the genome. "

102-

[ENCODE Consortium, Nature 447, 2007]
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Conclusion:
The distinction

between gene and
non-gene Is

becoming less
clearcut
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Genes & Pseudogenes

(a) Functional Gene Ambiguous Cases (b) Dead Pseudogene

L

Zhenq & Gerstein T|G (2007) (IPromoter I:' Exon [::] Pseudo-Exon I:I RNA % Mutations disrupting protein coding J




Genes or Pseudogenes?

(a) Functional Gene Ambiguous Cases (b) Dead Pseudogene

L

| - l i Transcribed
pseudogene regulates
- B= parent (NOS)

Zhenq & Gerstein. TIG (2007) (IPromoter I:' Exon [::] Pseudo-Exon I:I RNA % Mutations disrupting protein coding J




Genes or Pseudogenes?

(a) Functional Gene Ambiguous Cases (b) Dead Pseudogene

(©) (d) () ) (9)

L

A processed psetidogene
without disablement

|
[
|
[
[
O

L | A duplicated pseudogene

T with a truncated transcript

l
*
[ %

A pseudogene whose RNAs can A ps:udogene whose decayed A pseudogene whose RNAs can
form a RNA-RNA duplex with DNA contributes to part(s) of a form a chimeric transcript with
mRNAs from its parental gene new horned ncRNA gene mRNAs from a functional gene
(e.g., NOS pseudogene) (e.g. Xist gene)

Zhenq & Gerstein T|G (2007) IPromoter I:' Exon [::] Pseudo-Exon I:I RNA % Mutations disrupting protein coding




21-nucleotide
SIRNA

mRNA cleavage

Recent Discoveries in Mouse & Fly

Czech, B. et al. Nature 453, 798—-802 (2008).
Ghildiyal, M. et al. Science 320, 1077-1081 (2008).
Kawamura, Y. et al. Nature 453, 793-797 (2008).
Okamura, K. et al. Nature 453, 803—-806 (2008).
Tam, O. H. et al. Nature 453, 534-538 (2008).
Watanabe, T. et al. Nature 453, 539-543 (2008).

Hairpin

What are Active

Pseudogenes
Doing?

Potential for
Gene

Requlation via
endo-siRNA

[Sasidharan & Gerstein, Nature ('08)]
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Looking Back Over the Talk

‘*\. ’L?:‘./’

1 09 - Lectures.GersteinLab.org ¢



Overview of the Process of

Intergenic Annotation

« Basic Inputs

1.

2,

* Results of Analyzing Similarity

Doing large-scale similarity comparison, looking

for repeated or deleted regions

Determining experimental signals for
biochemical activity (e.g. transcription) across

each base of genome

Comparison

1. Finding repeated or deleted blocks
1. As a function of similarity (age)
2. vs. other organisms or vs. human

reference
3. Big and small blocks

(duplicated regions and retrotransposed

repeats)

« Results of Processing
Raw Expt. Signals

1.

Signal Processing: removing
artifacts, normalizing, window
averaging

Segmenting signal into larger
"hits" ("Active Regions" or
ARs)

Clustering together active
regions into even larger
features at different length
scales and classifying them

Building networks and
beyond....

(c)'09
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Outline

 Signal processing to call "Blocks"
() Calling Punctate Blocks (ChipSeq)
() Calling Broader Blocks (CNVs)
 Clustering "Blocks" into larger regions
¢ Binding Sites

« Annotating Copied Regions in the
Genome

¢ SD and CNVs
() Pseudogenes

* Integration of Pseudogenes with Other
Annotations

* Future of Annotation

() What is a "gene" post encode?

111-
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Segmenting the Raw "Signal”
from Next-generation Sequencing into
Usable Annotation Blocks

* PeakSeq

() Scoring chip-seq expt relative to input control
¢ Simulating chip-seq expt anticipates & allows correction for non-uniformity

112 - Lectures.GersteinLab.org ¢



Signal Processing #2:
Identifying Structural Variants in Human

Population
* BreakPtr  PEMer
() Model-based segmentation () Detecting Variants from
using bivariate HMM discordantly placed paired
. MSB -ends

¢ Simulation to paramaterize

¢ Mean-shift segmentation e
statistical model

approach following grad. of

PDF  ReSeqSim

() Equally applied to aCGH and () Efficiently simulating
depth of coverage of short assembly of a representative
reads variant

() Shows that best
reconstruction has a
combination of long, med.
and short reads

1i3



First-Pass Annotation Clustering and
Characterizing Novel Transcribed Regions

and Groups of Binding Sites

» Deserts and Forests
of Binding Activity
¢ on ~50kb scale
( Biplot gives broad
separation of seq. specific
and non-specific factors

and associated genomic
bins

1i4-



Analysis of Duplication in the Genome:
SVs and SDs

» Large-scale analysis of existing CNVs & SDs in
human genome

« SDs assoc. with Alu, pseudogenes and older SDs

* CNVs assoc. other repeats (microsat.) and not as
much with SDs

« Suggestion: Alu burst 40 MYA triggered much NAHR
rearrangement, then dupl. feed on itself in hotspots
but now dying down and NAHR assoc. with other
repeats and CNVs also from NHEJ
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Annotating the Human Genome:

Integrative Annotation of Pseudogenes in

Relation to Conservation, Transcription,

and Duplication

* Pseudogene Assignment
Technology

¢ Pipeline + DB
() Ontology
() Pseudofam analysis of

Pseudogene Families, highlight

outliers
* Annotation of Human Genome
() Pipeline draft (20K) + Hybrid
Approach
() Ribosomal Pseudogenes

¢ Pilot Phase: Consensus
annotation from automatic

pipelines & manual curation
gives 201

* Integration with Conservation
and Seq. Constraint
() ~2/3 processed are primate
specific
( Evidence for selection

operating on a few but most
neutral

» Pseudogene Activity

() >20% appear to be
transcribed (38/201)

() No obvious selection on
transcribed ones
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More Information on this Talk

TITLE: Human Genome Annotation

SUBJECT: GenomeTechAnnote

DESCRIPTION:

CSHL, 2009.04.29, 12:00-13:00; [I:CSHL] (Long GenomeTechAnnote talk,
incl. the following topics:

"junk DNA", anonymity*, chip-seq-simu*, peakseq*, breakptr*, msb*,
pemer*, resegsim*,tredist*, sdcnvcorr* , cosbcnv*, pseudofam*,
pseudopipe*, encodepgenes*, rp-pgenes*, sirnapgene*, encode-pilot*,
pgene-classify*. Too long, fits into 70’. PPT works on mac & PC and
has many photos w. EXIF tags .)

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily
cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the
site. For instance,

the topic pubnet* can be looked up at
http://papers.gersteinlab.org/papers/pubnet )

(©)'09

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to

relevant papers or link to gersteinlab.org).
PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see
http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily

queried from flickr, vizz http: //www. flickr.com/photos/mbgmbg/tags/kwpotppt
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