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GersteinLab.org Research
Overview: Bioinformatics

« Genome Annotation

() Characterizing non-coding regions of the
genome, focusing on protein fossils and
novel RNAs
(Pseudogene.org +
GenomeTech.GersteinLab.org)

() Personal Genomics — esp. related to SVs

* Molecular Networks

{ Using molecular networks to integrate &
mine functional genomics information and
describe genefunction on a large-scale
(Networks.GersteinLab.org)

* Macromolecular Motions

¢ Analyzing select populations of 3D-
structures in detail, trying to understand
their flexibility in terms of packing
(MolMovDB.org)
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The problem: Grappling with

Function on a Genome Scale?
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~1 ,200 protein-coding genes

(~950 pseudogenes)

[Hillier et al, Nature, 424, 157]
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EF2 YEAST

Descriptive Name:
Elongation Factor 2

Lots of references
to papers

Summary sentence
describing function:
This protein promotes the
GTP-dependent
translocation of the
nascent protein chain from
the A-site to the P-site of
the ribosome.

Traditional single

molecule way to integrate

evidence & describe

File

Edit

function

View Favorites Tools Help

Links > | Norton Antivirus ()

home About UniProt

theN\yniversal protein knowledgebase

Text Search UniProt Knowledgebase

JniProt

Getting Started Searches/Tools Databases Support/Documentation

General information about the UniProt/Swiss-Prot entry

Entry name EF2_YEAST
P32324
Release 27, 01-OCT-1993

Release 27, 01-0CT-1993

Primary accession number

Entered in Swiss-Prot

Sequence was last modified

Annotations were last modified | Release 47, 01-MAY-2005

Protein description

Protein name ‘ Elongation factor 2

Synonyms ‘EF-Q

References

[

=

NUCLEOTIDE SEQUENCE (EFT1 AND EFT2).

MEDLINE=92112760; PubMed=1730643; [NCBI, ExPASy, EBI, Israel, Japan]
Perentesis J.P., Phan L.D., Laporte D.C., Livingston D.M., Bodley 1.W.;
“Saccharomyces cerevisiae elongation factor 2. Genetic cloning, characterization of
expression, and G-domain modeling.”;

Ci

FUNCTION This protein promotes the GTP-dependent translocation of the nascent protein chain from

«

the A-site to the P-site of the ribosome.

SUBCELLULAR LOCATION

Cytoplasmic.
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Some obvious issues in scaling single

molecule definition to a genomic scale

« Fundamental complexities

{ Role Conflation:
molecular, cellular, phenotypic

() Often >2 proteins/function

{ Also Multi-functionality:
2 functions/protein

phenotypically — e.g. Pleiotropic effects such as
human PKU being involved in retardation &
eczema

cellular role — e.g. Depending on the molecule it
interacts with HSP70 is involved with protein

folding, translocation of proteins into mitochondia,
biogenesis of certain subunits..

[HSP from Craig et al, Rev Physiol Biochem Pharmacol (2006) 156:1 ; Terms from Seringhaus et al. GenomeBiology (2008)]
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Some obvious issues in scaling single
molecule definition to a genomic scale

ik ool o 0 1

 Fundamental complexities

( Role Conflation:
molecular, cellular, phenotypic

() Often >2 proteins/function

{ Also Multi-functionality:

2 functions/protein

* phenotypically — e.g. Pleiotropic effects such as
human PKU being involved in retardation &
eczema

+ cellular role — e.g. Depending on the molecule it

interacts with HSP70 is involved with protein B ~'\."/ I Y R W e = _
folding, translocation of proteins into mitochondia, === e S N BN \_\\\‘ A ‘\\\\ =~
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[HSP from Craig et al, Rev Physiol Biochem Pharmacol (2006) 156:1 ; Terms from Seringhaus et al. GenomeBiology (2008)]
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Hierarchies & DAGs of
controlled-vocab terms
but still have issues...
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MIPS (Mewes et al.) GO (Ashburner et al.)

[Seringhaus & Gerstein, Am. Sci. '08]
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Networks (Old & New)

Fringe: Vital in boundary formation

in developing fly wing.

Dvl
Fringe
Delta > Notch
/ﬁ 0
Serrate
PSE2 PSEN
NCSTN APH-1
TACE

Numb: mutations impair

sensory organs in flies

Numb

ltch: linked to RBPMS A CSNK2AT
itchy skin in mice 7/
o EPS8 CSNK2A2
Iz
—— TP53

DLK1 Dv AP2A

AN \ |

Fringe GS/KS\B Numb MDM2

Deltex — GRB2

Classical KEGG pathway

__» Deltex
] Delta

'Notch: with defects, flies
develop notches in wings

Serrate

B DLLT
CSL
TACE
I
DLG1

CTNNBH1

\ MAML
! APP
PCAF ™ LEF1
PSE2 — PSEN SN
'l vyi L Y skip
NCSTN — APH-1
M RELA cSL
G22P1
ABL1

APBA1

Same Genes in High-throughput Network

[Seringhaus & Gerstein, Am. Sci. '08]
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Networks occupy a midway point in
terms of level of understanding

1D: Complete ~2D: Bio-molecular 3D and 4D:

Genetic Partslist Network
Wiring Diagram

Detailed structural understanding
of cellular machinery
(e.g. ribosome in different
functional states)

(c)'09

[Fleischmann et al., Science, 269 :496] [Jeong et al. Nature, 41:411] [Chiu et al. Trends in Cell Biol, 16:144] 1



Networks as a universal language

~ Internet
[Burch & Cheswick]

Electronic
Circuit

Disease
- ..  Spread
[Krebs] é
Protein @
Interactions S :
-: [Barabasi] oo oy o o Social Network Q_I




Using the
position in
networks to

describe

function

Guilt by association
Rod Blagojevich
Governor Q
Antoin ‘Tony’

Rezko Chris Kelly
Campaign Campaign
fundraiser fundraiser
STATE HEALTH AND INDIVIDUALS AND
PENSION BOARDS FUND-RAISERS Lobbyist 1 O
Stuart
Levine JE ' Indmdual A
Board [N '
member | ¢

Fund-raiser A
A\ 4 William Cellini )
= Board member -’

Individual B Engineering
3 Firm 1
llinois {
Health \ oy /
Eac ilities i Hospital 9
lannin William Cellini i " i >
BOElfdg TRS Board member All Ata Highway Eotiiad Contributor 1

Contractor 1

Gov.
KATHLEEN
BLANCO
puty Q
BILL MAHER

MICHAEL BROWN, FEMA,
FEDERAL AGENCIES

“It's the responsibility of faith-based
‘organizations, of churches and charities
and others to help those people.”

“To the extent that the federal
gwenmnt didn't fully do its
job right, | take responsibility.™

s 'jj
MAYOR f\\“ - - %fs
A

z
é’ -g ‘. %Q
gl T A P B LAY E

“The anthem of the self-
loathers. ... You can never
blame victims. You can

never blame the poor. ...
those who didn't get
out of New Orleans, it's not
their fault. Even those that
could and didn', it's not
their fault, it's not their
it

“You cannot read a newspaper
without the gloating and the
happiness with which the
mainstream pross is roporting the
president's approval numbers.”

B8 Marsh The New Yok Times

Guve rnor A

Chief of Staff Finding the ?
causal regulator G

IS e O (the "Blame '§
@ Advisor Game") §
Editorial %
Board §
o

wiey [NY Times, 2-Oct-05, 9-Dec-08] -
@ o -
Tribune Company H



Combining networks forms an ideal way

of integrating diverse information

Part of the
TCA cycle

——> Metabolic

pathway

............. » Transcriptional

regulatory
network

Physical protein-

protein Interaction :

Co-expression
Relationship
Genetic interaction

(synthetic lethal)
Signaling pathways

N
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Why Networks?

Generating Networks
() Processing Protein Chips

(yeast & human nets)

(} Propagating Known Information
(yeast ppi)

Central Points in Networks
¢ Hubs & Bottlenecks

(yeast ppi & reg. net)
() Tops of Heirarchies

(yeast reg. net)

(¢ Identified by score

(human miRNA-targ. net)

Dynamics of Networks

( Across environments
(prokaryote metab. pathways)

Protein Networks &
Variation

(human ppi & miRNA-targ. net)

Outline: Molecular

Networks

1 3 - Lectures.GersteinLab.org ¢



Example: yeast PPI
network

Actual size:

() ~6,000 nodes
— Computational cost: ~18M pairs

¢ Estimated ~15,000 edges -
— Sparseness: 0.08% of all pairs (Yu etal., © /~
2008) T -

Known interactions: -

¢ Small-scale experiments: accurate but few
— Qverfitting: ~5,000 in BioGRID, involving
~2,300 proteins

( Large-scale experiments: abundant but
noisy
— Noise: false +ve/-ve for yeast two-hybrid
data up to

45% and 90% (Huang et al., 2007)

[‘,

|

14.
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Different Types of Molecular Networks

ansc“p\ion factors and Sfacy,
\ rs

Target genes

Undirected

Protein-protein Interaction networks TF-target-gene Regulatory networks \ 4

aiyoxyiate 5
Cycle ]
0
Py — i iih
>
sloegetote
N
e MDH2 |
7
o 2
o L I ﬁim
50
b &
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Metabolic pathway networks miRNA-target networks

—_—

Yl @ ©

Directed

[Toenjes, et al, Mol. BioSyst. (2008);
Jeong et al, Nature (2001); [Horak, et al,
Genes & Development, 16:3017-3033;
DeRisi, lyer, and Brown, Science,
278:680-686]
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Generating
Networks

How do we construct large
molecular networks.
From processing high-
throughput protein array data?

16
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Protein Networks
from Processing
Protein Chip Data

 Array functional proteins on a chip
« Readout can show presence of proteins

in sera (Via autoantibodies)’ small mol. ~6000 yeast proteins on a chip, Zhu et al. Science ('01)
interactions, enzymatic activity, & @
protein interactions

» Technical issues in processing protein

chips similar but not identical to those for i e
DNA chips SN R R e
) Hybridization v protein binding ’: . >
() Background correction & denoising, 7% NN o

Normalizing across chips & replicates, "
Calling "hits"

¢ ProCAT (Zhu et al., GenomeBiology, '06) DELARNAM N
&

., 4200 phosphorylations involving 1325
RLM (Sboner et al., J Proteome Sci. '09) proteins, Ptacek et al. Nature ('05) ‘1:




Signal :
Distribution -

& Metrics
[Sboner et al., = |
J Proteome Sci. '09] 5 £ 10 y - - T - -
] Protein Chip.Sig. Intensi.ty Distribution Representative DNA

Goal: from different applied sera Chip Sig. Dist.
Decreasing (NEGative & with POSitive sera)
variation betw.
re pl |Cates / “Positive” “Normal’
(both inter- &
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measured by £ 0
CV, & g1
: : > g
increasing 33 < =
separability > 5%
(S) betw. :
known B I —

o inter-array variability inter-array variability
positive & s\ o ov

: =g N '
negatlve K “Positive spots” ( ) N
Samp|eS S = % sample separability
Ol + 0'2 Fisher’s signal-to-noise ratio




RLM Normalization,
how it compares?

NORMALIZATION

* Asingle scaling factors

— Quantile

* Signals are normalized robustly
according to the quantiles of a
reference distribution

— Robust Linear Model @i
yijkr =ai+ﬁj +Tk+£ijkr
a;  Slide-effect (inter slide)

B;  Sub-array effect (intra slide)

T, Signal
€;, Random error
Inter-array CV: “positive” serum
10 ° g
: . 3
+r 8 ) |
08 H
; !
= g 1
06 1 l
T
e N e
—

%
-

g }[

rmvsr o

nmy5.g o

RLM

04 0.5

0.3

01

0.0

1 f
] /{\/ '\ Quantile
o \

“positive” serum

“normal” serum

01

0.0

Inter-array CV: “normal” serum
8

L
[=]

Density

20 4

05

00

¥ g
8 g
8

i

f

-

}
-
}

rmysr o

Raw
rmlgG.r

Global
Quant.

fnm.yvsr -

RLM

myv5.g —

fmlgGr o }“-

Quant.

RLM

rm.v5.g -




Check #2: How Signal

Intensity Correlates

Protein signal vs. serum concentration

—— strong correlation
---- no correlation

1.0
L

over a Titration

density

“Positive”
100%

“Positive” 75%
“Normal” 25%

Expectation

“Positive” protein signal should
positively correlate with
“Positive” serum dilution

Higher number of “hits” for the
“Positive” serum

00 02 04 06 08
| 1 1

T T
-1.0 -0.5

T T
0.0 0.5

T
1.0
correlation coefficient

Correlation of signal intensity with
“positive” serum concentration

[Sboner et al., J Proteome Sci. '09]
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Generating Networks #2

How do we construct large molecular networks?
From extrapolating correlations between functional genomics data with fairly
small sets of known interactions, making best use of the known training data.

21
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Training sets

Known interactions

Known non-interactions

Unknown

()09
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Network prediction: features

:< 1 8 \\‘ 2 ;
)
x,=(0.8,2.2,1.5, ...)
)

x;=(43,0.1,75,...) )

sim(X;, X,) = 0.62 3
sim(X;, X3) =-0.58

Similarity scale:

Gasch et al., 2000 1 _

« Example 1: gene expression

x,=(0.2,2.4, 1.5, .

&

23



Network prediction: features

« Example 2: sub-cellular localization

sim(x, x,) = 0.81
sim(X,, X;) =0.12
http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif

Similarity scale:
1

()09
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Data integration & Similarity Matrix

25.



Learning methods

An endless list:

» Docking (e.g. Schoichet and Kuntz 1991)
Evolutionary (e.g. Ramani and Marcotte, 2003)
Topological (e.g. Yu et al., 2006)
Bayesian (e.g. Jansen et al., 2003)
Kernel methods
( Global modeling:
« em (Tsuda et al., 2003)
« kCCA (Yamanishi et al., 2004)
« kML (Vert and Yamanishi, 2005)

» Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
¢ Local modeling:

» Local modeling (Bleakley et al., 2007)

Let’s compare in a public challenge!
(DREAM: Dialogue for Reverse Engineering Assessment and Methods)

26



Our work: efficiently propagating

known information

Training set expansion
« Motivation: lack of training examples
» Expand training sets horizontally

Multi-level learning

 Motivation: hierarchical nature of
interaction

« Expand training sets vertically

DREAMS in silico regulatory network
reconstruction challenge

Local model 1

Local model 2

PPI predictions

!

!

RRI predictions

27



Protein interaction

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

28
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Domain interaction

Pfam domains: PFO0107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

29.
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Residue interaction

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

30-
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Combining the three problems

Protein
interactions

Domain
interactions

s Residue
ﬁé interactions

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

———————

—_——— e e ———

i. Independent levels

_

ii. Unidirectional flow

A

—_— e — — —

Y

iii. Bidirectional flow

()09
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Empirical results (AUCs)

Ind. levels Unidirectional flow Bidirectional flow
Level PD PR DR PD PR DR PDR
Proteins 71.68 72.23 72.50 72.82
Domains 53.18 61.51 71.71 68.94 71.20
Residues 57.36 54.89 53.81 72.26 63.16 77.86
A
| ri_l | ’}_II | ’}_II
I I I I I I I I I I | I
] ] I ] ] ]
A\ 4 I \4 1 f 1 f
. Highest accuracy by bidirectional flow
. Additive effect: 2 vs. 3 levels

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

()09
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Finding Central Points in
Networks: Hubs &
Bottlenecks

Where are key points networks ? How do we locate them ?

33 - Lectures.GersteinLab.org ¢



Global topological measures

Indicate the gross topological structure of the network

O
O

\4

Degree (K) Path length (L) Clustering coefficient (C)
5 2 1/6

Interaction and expression networks are undirected

[Barabasi]

34.



TFs
")

' Targets
Global
topological

measures for y v

directed 471§
networks

In-degree Out-degree

3 5

Regulatory and metabolic networks are directed

35



Scale-free networks

Power-law distribution

log P()hA "N _‘
Ve 1)(/\)~,\ Y / ’ ‘
] R el
® >€ A
- ALY
loe k 7/
log(Degree) ¢

Hubs dictate the structure of the network

[Barabasi]

36



[Yu et al., 2003, TIG]

Hubs tend to be Essential

Integrate gene essentiality data with protein
interaction network. Perhaps hubs represent
vulnerable points?

[Lauffenburger, Barabasi]
25 -

"hubbiness”
Average degree (K)
I \./
I

(&)
]

Non- Essential

Essential



[Yu et al., 2003, TIG]

Relationships extends to "Marginal Essentiality”

Marginal essentiality measures relative importance of

each gene (e.g. in growth-rate and condition-specific

essentiality experiments) and scales continuously with
"hubbiness” %

29
o -

N < T
ha 3
D 25
cC 9
- — L T T
O o I
O 2107
>  © I
C Z
= S 1

0

m—  —
Not important important Very important Essential

o o]
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Another measure of Centrality:
Betweenness centrality

Betweenness of a node is the number of
shortest paths of pairs of vertices that run
through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness.
Sociometry 40: 35-41.

Girvan & Newman (2002) PNAS 99: 7821.

39.



Betweenness centrality -- Bottlenecks

Proteins with high betweenness are defined as

Bottlenecks (top 20%), in analogy to the traffic system

4 - 2 = ]
Wt prad s NPt b
AP o i | By
2 oy o . e - |- % |
[ £ ' Y. ' ahid \ =
ok

George Washington
Bridge

40-
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O
O
O
O

Bottleneck

Hub-bottleneck node

Non-hub-bottleneck node

Hub-non-bottleneck node

Non-hub-non-bottleneck node

Bottlenecks &

Hubs

[Yu et al., PLOS CB (2007)]
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Bottlenecks are what matters in

60%

requlatory networks

90% A

40% A

30% A

20% A

Fraction of essential genes

10% A

0%

P <1020

7]

B Hub-non-bottlenecks
M Bottleneck-non-hubs

Interaction Network

[Yu et al., PLoS Comput Biol (2007)]

v

o 0
P <104

Regulatory Network

()09
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Finding Central Points in
Networks #2:
Tops of the Hierarchy

Where are key points networks ? How do we locate them ?

43



Social
Hierarchy tecov
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Determination of "Level"
in Regulatory Network Hierarchy with
Breadth-first Search

|. Example network with all 4 motifs Il. Finding terminal nodes (Red)

lll. Finding mid-level nodes (Green) IV. Finding top-most nodes (Blue) =

Level 3

Level 2
Level 1

Level 1
[Yu et al., PNAS (2006)]
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imilar

Regulatory Networks have s

structures

lerarchical

h

6.0 510" TUI9}S195) SDINJIdT] -W W

E. coli

S. cerevisiae

[Yu et al., Proc Natl Acad Sci U S A (2006)]



Example of Path Through
Requlatory Network

. Expression of MOT3 is
\ 4 activated by heme and
oxygen. Mot3 in turn activates
@ the expression of NOT5 and

GCN4, mid-level hubs. GCN4
activates two specific bottom-
level TFs, Put3 and Ugag,
which trigger the expression of
enzymes in proline and

@ nitrogen utilization.

()09

Nucleus

O2. Heme Cytoplasm

47

[Yu et al., PNAS (2006)]



Yeast Requlatory Hierarchy:
the Middle-managers Rule

—Average # of regulated genes (out-degree)

A. Regulatory hierarchy in S. cerevisiae —=# of TFs at each level

P <0.01

P<6X10*

Level in hierarchy

0 50 100 150 200

48 - Lectures.GersteinLab.org ¢

[Yu et al., PNAS (2006)]
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Yeast Network Similar in Structure to

Government Hierarchy

with Respect to Middle-managers

B. Governmental hierarchy of a representive city (Macao)

Level in hierarchy

r—Average # of regulated people (out-degree)
-=-# of managers at each level

|

# of people

(o)
<t



Characteristics of Requlatory Hierarchy:

Middle Managers are Information Flow

Bottlenecks

. Average betweenness at each level

P<10™

60. (9)

P<10™

< ™

Ayoueiraly

N

MEELER]

15

10

0§

Average betweenness (x1000)

[Yu et al., PNAS (2006)]



Characteristics of Requlatory Hierarchy:
The Paradox of Influence and Essentiality

Data unavailable

w

Level in Hierarchy

N

0 50 100 150 200 250 300 350
# of affected genes in knock-out experiments

[Yu et al., PNAS (2006)]
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Finding Central Points in Networks #3:
Points of Maximal Regulatory Effect

i

52



* How much does a

regulator influence RE-score: Another way to identify

. 5 -
its targets® "important" network nodes
* For miRNA-target

networks easy to G NENEENENEEEEaENEEEERAEEENESENSLESNERSRESNESSERSRESRERSRRSLERRES

calculate, as Target mRNA 2

all influence is down- 3

regulation gy g

() target prediction via: Z
TargetScan, PITA, §

3

n
One sample =
n

PicTar, miRanda, ...

* Look at down-reg.
genes in a sample
& compare with
targets of a specific |
micro-RNA e H

() more down-reg
genes => stronger
Cheng et al.,

regulatory effect RE score=R -R, Genome Biology, :

Ranking
Expressions

JIOMIBU YNYHW -YNHODIN




=

o

-

2

= miR2

-

; 0] ampl
> Ranking

= Expressions
~

3

o

-

-~

21098 Oy

1

Calculating RE scores of a miRNA in each sample

21008 Oy

ER+ l ER- ___ Sample

Comparing the RE scores between ER+ and ER-
RE-changing miR RE-invariant miR RE-changing miR

(ER->ER+) | (ER-<ER+)

i
1

==

ER+ ER- ER+ ER- ER+ ER-

21028 3y
91098 Iy

Application of
RE-score to
measure
changing
MiRNA effect In

different

conditions
(ER- and ER+ breast
cancer)

Cheng et al., Genome Biology, 2009
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RE-score can be used to
classify cancers

(3) Clustering based on RE
score divides samples into 2
main types of cancer

(4) Clustering better than
based on indiv. gene
expression levels

BER+
ER-

[T

r

s

I

(1) RE-score profile for diff. miRNA in 1 cancer sample.
(2) Tabulate over many different breast cancer samples

Cheng et al., Genome Biology, 2009

hsa-miR-342

o plien s e s e pen
@ 17

()09

sa-miR-193a
sa-miR-145
sa-miR-127
a-miR-122a
sa-miR-588
sa-miR-517a
a-miR-769-5p
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Network Dynamics #2:
Environments

How do molecular networks change across environments?
What pathways are used more ?
Used as a biosensor ?

56



What is metagenomics?

Genomics Approach

Culture Microbes

Extract DNA

— P —

Metagenomics Approach

Collect Sample

Extract DNA

- -

Sequence Assemble and Annotate
ATCGTATA e F_
CGCGAAG — = : T

ACGTCTGA =T AN
AGTGCTGCT

Sequence Partially Assemble and Annotate

ATCGTGATAGATGATAGTAGA
ATGCTGCATGCATCTAGCACT
ACAGTAGCTAGCTACGTACTA
CAGCTGACTAGCTAGCTAGCT
ACGTAGCATGCTAGCTAGCAG
ACGTACGTAGCTAGCTAGCTAG  —— )
ACGTACGTACGTAGCTAGCATC
AGTCGACTGAGCCAGTGATGAT
ACGATGCATGAGCAGATGCTAC
AGATCGTAGCATGCTAGCATGCT
ACGTACGTAGCTAGCTAGCTAAG
AGCTAGCATGCTAGTAGCATGAG
ACGATGCTAGCTAGCTAGCTGATA
TCGATCAGCATGCTACGATGCAAG
ACGATCGATGCTAGCTAGCTAGCAT
AGCTAGCTAGTCAGCTAGCTAGATG

s
—
_—
_><_
—_—
e
~f—
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Global Ocean Survey Statistics (GO

SCIENCE IN THE
PETABYTEERA

USA

. Canada
Sl 7 Northern Gulf of Maine
8Newport Harbor, RI 6 Bay of Fundy, Nova Scotia (Estuary) o
Sl 5 Bedford Basin, Nova Scotia (Embayment), 2®
10 Cape May, NJ 4 Outside Halifax,Nova Scotia o
11 Del NJ (Estuary) of Maine @11 9
12 Chesapeake Bay, MD (Estua 120 1
13 Off Nags Head, 5C
North America o713 Sargasso Stations,
Bermud
14outhof Charleston, ¢ erme a-01
USA 14 00
15 Off Key West, FL
16 Gulf of Mexi :
it Atlantic
160915 Ocean
1,7 Vucatan ChamRéliMaxico
e18
18 Rosario Bank, Honduras
35 CottaRica
25 Dirty Rock,Cocos Island Panama
30 rnging Reel asiciand®! ) 19MNoitheastofColon
e 36 26 mifrom cogesisiane $20  20Lake Gatun (Freshwater)
314° &£ 21 Gulf of Panama
% 034 o 21
328 25083 22
22 250 mi from Panama City
27'28
ana (hypersaline) 33 X ® 134 mi NE of Galapogos, Ecuador
037 South
Equatorial Pacific TAO, International America

6.25 GB of data
7.7M Reads

1 million CPU hours
to process

Rusch, et al., PLOS Biology 2007
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Pathway Sequences

(Community Function) \

boli
el

Environmental

Features

. B1 3800
Sites

1400

1000

100

400

By |2200
v

Environmental
Metadata Temp NaCl Depth

Sites

15°C} 2721 10m
23°C| 366 S5m

I i

READS ——> PROTEIN FAMILIES —— PATHWAYS

CCGTGAGCACGATGCGC e mmmmmmeae

.Y (e () ]y p—
ATCGTGACGCGATGC---

CCGTGHGCACGHTGCGG(’TGCT{#TGCT ______________
ATC(.:TQACC%CéE%%ATGCT -
GCGATCGATCGATCGTAG e —

TGCTGCTAGCATGC T cmeeeeemee
GCCATCGATCGATCGTAGC -

TCCT GCTAGCATGCT --------

CCGTGAGCACGATGCGC —mmmmnmmnnmen

GTATCGTAGCATGC TT-emeemm e

CCGTGAGCACGATGCGC--wmmrmmnmenm
GCGATCGATCGATCGTAGC--sememeeme

L
- P.=2+1+3 P, =2+4+3
P,=5+2+6 P, =5+7+6

PATHWAYS

P=f +f+f
%=Q+Q+Q

Expressing
data as
matrices
indexed by
site, env. var.,

and pathway
usage

[Rusch et. al., (2007) PLOS Biology;
Gianoulis et al., PNAS (in press, 2009]

o
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Simple Relationships: Pairwise
Correlations

Environmental

boli
bathways

[ Gianoulis et al., PNAS (in press, 2009) ]

Metadata Te NaCl §Depth
Sites B1 3800 | 140 1000 ' B1 15ecl 272 hiom
gy |2200 [ To0|[ 400 Sites oo [723°Cf 366 5m
\ 4
Environmental Features
Chlorophyll Temp e
— » " .. .
1o % . .
E— 3 ™ g
= e,
o m— 2 e *
P —— 2 ® oo o °
5 q : : g e LIPS
— ° L]
t __: T . =68
— | . . [ ] . . .
h ——— -2 -1 0 1 2
—_— :— Actual Temperature
- 00 W 1
a Cobalamin Biosynthesis
y [ —— ——{Photosystem Il
0. e —
S s === Photosystem |
Carbon Fixation (Dark rx)
= ————— Glutamine Degradation
-1.0 —

()09
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Canonical Correlation Analysis:
Simultaneous weighting

Score # of papers published Undergraduate Graduate School
Performance Index (UPI) | Performance Index (GPI)

[ Gianoulis et al., PNAS (in press, 2009)] -
~
o



Canonical Correlation Analysis:

Simultaneous weighting

Score # of papers published Undergraduate Graduate School
Performance Index (UPI) | Performance Index (GPI)
GRE
GRE GPA
P — —T—
L Environmental Metabolic
Features Pathways .
Temp  ©fC Photosynthesis  etc
( Chlorophyll Lipid Metabolism
Y

[ Gianoulis et al., PNAS (in press, 2009) ]
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Environmental-Metabolic Space

CCA Footprint
Q ; ——
Ew! NaCl A | P3e
ol -
% P1 Depth,
(T:)ar)r( -~ — %g _ [ ﬁ;\ '%
2" ./
-
NaCl Depth S g : P5.
| ' é ; Tempy
Linear combination of *  Linear combination of 59 ssssusiwsedsevinnnnns

lenvironmental| features. |pathways 0 05 00 05 10
Normalized Weights (Dim 1)
The goal of this technique is to interpret cross-variance matrices

We do this by defining a change of basis.
Given X = {xl,xz,....,xn} and Y={y1,,y2,...,ym}

’ b
o 2x  2xy max Corr(U,V)=— T2 ,
B S Sy a,b \/a 211“\/[9 2ab

[ Gianoulis et al., PNAS (in press, 2009) ]
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Strength of Pathway co-variation
with environment

CCA structural correlation

0.3 1

Environmentally Environmentally
invariant variant

&

BRI v

CCA structural correlation

[ Gianoulis et al., PNAS (in press, 2009) ]
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Conclusion #1: energy
conversion strategy,
temp and depth

KEGG Module

[ 2N
*—

ATPase
Photosynthesis Icom plex

¢ a4t ® o a o]
Oxidative . o — ol ole| o | ol o | ®
Phosphorylation [ r 1 | I 1

T4 e o
ATPase

complex

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #2: Outer Membrane
components vary the environment

[ Gianoulis et al., PNAS (in press, 2009) ] o
©



Biosensors:
Beyond Canaries in a Coal Mine

[ Gianoulis et al., PNAS (in press, 2009)] -

N
(s

(c)'09



Networks & Variation

Which parts of the network vary most in sequence?
Which are under selection, either positive or negative?

68-
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METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE
- A
Hapmap/Perlegen Database of Genomic Variants
International
HapMap
Project
P, Map to ENSEMBL genes
SNPs CNVs + SDs
Ensembl Genes
ENSGO00XXXX:
V0 Result
DN/DS XXXX )
Recombination rate
Int . * Dataset of network
n eracf ome Map t eins in th position / parameters
viap fo proteins mk © (e.g. degree centrality
interaction networ or betweenness
> centrality) in
relationship to SNPs,
4 CNV’s, recombination
~30000 interactions rates and positive
from HPRD and selection tests
Y2H screens
- )

* From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)

Source: PMK



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

Single-
basepair

Structural
variation

Source: PMK

Intra-species variation

Positive
Selection

I )
N
- e >
S

) O

Single-Nucleotide Polymorphisms

a0 - .
Positive
- e——— Selection
= - —
m -
I I

Copy Number Variants

Fixed mutations
(differences to other species)

Fixed Differences

Segmental Duplications



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK
PERIPHERY

Positive selection in the human interactome

-
@ High likelihood of
positive selection
Lower likelihood of
® positive selection
[ J
o Not under positive
_ selection
®
O No data about
positive selection
[o}
[ J
.

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE

SELECTION

Degree vs. Positive Selection

5,

]

45P¢ Spearman Rank P-value: 1.2e-06

41e

w

D

3

=
o

—

Positive Selection Test Likelihood Ratio
N
U‘l

o
($)]

1 & & & & 1

o

05 1 15 2
Betweenness Centrality

o

2.5

x 10°

Network periphery

Network center

[ 1 Hubs

Reasoning

Ve

-

* Peripheral genes are likely to under
positive selection, whereas hubs
aren'’t

* This is likely due to the following
reasons:

— Hubs have stronger structural

constraints, the network periphery
doesn’t

— Most recently evolved functions
(e.g. “environmental interaction
genes” such as sensory
perception genes etc.) would
probably lie in the network
periphery

* Effect is independent of any bias
due to gene expression differences

* With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection
(McDonald Kreitmann and LDD) corroborate this result.
Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)




CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

Centrality vs. SD occurrence Reasoning

Ve

* This result also confirms our initial
hypothesis — peripheral nodes tend
8- - to lie in regions rich in SDs.

7 -Spearman Rank P-value: 3.5e-04 .

* Since segmental duplications are a
different mechanism of ongoing
evolution, the less constrained
peripheral proteins are enriched in

46 them.

Number of Overlapping SDs
(6]

* Note that despite the small size of

2me 9 our dataset for known SD’s we get
significant correlations. It is to be
| TR OO e & O O0b o o oo 1 1o : .
0 05 1 15 2 25 3 35 4 expected that the correlations will
Betweenness Centrality x 10° get clearer as more data emerges*
Network periphery Network center

-

* Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome
Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)



IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR
THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE

NETWORK PERIPHERY? [LUSTRATIVE
. A
Relaxed Constraint Adaptive Evolution
Inter-Species * Increases inter-species * Increases inter-species
Variation (Fixed variation — more variable variation — more variable
differences) loci are under less negative loci are under less negative
selection selection
* Can be seen in higher Ka/ * Can be seen in higher Ka/
Ks ratio or SD occurrence Ks ratio or SD occurrence
Intra-Species * Increases intra-species * Should not have effects on
Variation variation — for the very same intra-species variation
(Polymorphisms) reason
* Can be seen in both SNPs
or CNVs
\ J

Source: Kim et al. PNAS (2007)



SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE
PERIPHERY IS DUE TO RELAXED CONSTRAINT

Inter vs. Intra-Species Variation in Networks Reasoning
4
4.37 * There is a difference in variability
(in terms of SNPs) between the
Inter-Species network periphery and the center
(Fixed 2.71
differences)
petwesaness * However, this difference is much
J . .
(x 10%) smaller than the difference in
selection
p<<0.01
Genes with Genas with
dN/ds>1 dN/gsS«<=1

* This most likely means, that part of

435 the effect we're seeing is due to
ntra-Sooci 4.08 ' relaxed constraint (and higher
ntra-Species variabilit
(SNPs) y)

[ Variability ]
Betweenness
Centrality * But, not the entire effect*
(x 10%)
p<0.05
Genes with Genes with
pPN/pS>1 pPN/pS<=1

* But it's hard to quantify
Source: Kim et al. (2007) PNAS



Similar Results for Large-scale Genomic Changes (CNVs and SDs)

Inter vs. Intra-Species Variation in Networks

4.18
Inter-
Species
2.61

(SDs)

Betweenness

Centrality

(x 104

p<<0.01
Genes intersecting All others
SDs
4.20

Intra-Species 325
(CNVs) '
[ Variability ]

Betweenness

Centrality

(x 10%)

p<<0.01
Genes intersecting  All others

CNVs

Reasoning

Vs

Source: Kim et al. (2007) PNAS

* There a small difference in
variability (in terms of CNVs)
between the network periphery and
the center

* But, there is a (as shown before)
marked difference in fixed (and
hence, presumably, selected) SDs
at the network periphery and center




Networks & Variation 2

Variation in the miRNA network

77-



Analyze Regulation in microRNA-
target Network

* Relationship between target in degree
(number of micro-RNAs that regulate gene)
& evolutionary rate of gene?

¢ In deg. related 3' UTR size

* Expectation: more regulation, more constraint

78 Lectures.GersteinLab.org (c) 2009



Ka/Ks (human vs. mouse)

Relationship between microRNA

requlation and protein evolution

(18]
o . p=-0.21
Q |
O T T T L)
0 100 200 300
Number of regulatory miRNAs (human)
Humanvs. HNumberof genes Correlation P-value

chimpanzee
mouse

rat

cow

chicken

11326
13280
12270
11683
8061

-0.11
-0.21
-0.20
-0.21
-0.18

2.E-32
7.E-128
4 E-107
8.E-115
1.E-57

Important genes are regulated more
intensively regulated by the
microRNAs

[Cheng et al., BMC Genomics, 2009 (in press)]
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Ka/Ks (human vs. mouse)

0.4

0.3

0.2

0.1

0.0

MicroRNA requlation:

a two-way strategy

For non-housekeeping genes, functionally critical genes are intensively regulated by miRNAs

and prefer long 3’'UTR.

housekeeping genes, however conserved, are selected to have shorter 3’'UTRs to avoid miRNA

regulation.

P<2E-16

_—
1

B housekeeping :
| — non-housekeep!ng
I

3'UTR length

2000

0

6000 8000

4000

P=2E-13

—_

P<2E-16

®
< gl
Z
= e
E 1

o I
o O I
o M 1
s |
> g, !
bt o~ 1
—
)
o O
0 O
E -
=1
=

O-

—_

()09
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[Cheng et al., BMC Genomics, 2009 (in press)]
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Network dynamics constrain evolution

.
| |
M| |

RTK

Rat PC12 | Fruit fly
cell line

MAPK Rolled

Alexander et al. Sci. Signal. (2009) 2: pe44
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Network dynamics constrain evolution

Rat PC12 | Fruit fly
cell line

s

Raf

Alexander et al. Sci. Signal. (2009) 2: pe44
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Speculation: Why more tightly regulated
gene might have less variation

| |
S |
RTK

Dynamic model:
- ODE model with Michaelis-Menten kinetics

- parameters fit
to time series data of protein activities
in response to EGF and NGF

Rat PC12 | Fruit fly from rat PC12 cell line

cell line

In sensitivity analysis,
stiff parameters cluster around Ras and Raf.

Polehole

Population study in fruit flies:
- allele variation based on

PCR of pathway genes

Dsor1

Ras and Raf have less allele variation
Rolled than other proteins in the network.

Brown et al. Phys. Biol. (2004) 1: 184
Alexander et al. Sci. Signal. (2009) 2: pe44 Riley et al. Molec. Ecol. (2003) 12: 1315



Why Networks?

Generating Networks
() Processing Protein Chips

(yeast & human nets)
(} Propagating Known Information
(yeast ppi)

Central Points in Networks
¢ Hubs & Bottlenecks

(yeast ppi & reg. net)
() Tops of Heirarchies

(yeast reg. net)

(¢ Identified by score

(human miRNA-targ. net)

Dynamics of Networks

( Across environments
(prokaryote metab. pathways)

Protein Networks &
Variation

(human ppi & miRNA-targ. net)

Outline: Molecular

Networks

84 - Lectures.GersteinLab.org ¢



Conclusions on Networks:
Generation

* Networks from processing
protein chip data

¢ RLM normalization surpresses
quantile

Predicting Networks

() Extrapolating from the Training
Set

{ Principled ways of using known
information in the fullest possible
fashion

* Multi-level learning

N
\
3

y Ty,
g‘i"‘? A
(c) '09

LT
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Conclusions:
Analysis of Network Structure

* Centrality Measures in

Protein Network
() Hubs & Bottlenecks
{ Importance of later in regulatory
networks
* Regulatory Network
Hierarchies

() Middle managers dominate,
sitting at info. flow bottlenecks

() Paradox of influence &
essentiality

86-



Conclusions:
Points of Network Centrality

* RE-score measures

degree of (down)
regulation of targets

V. hon-targets

* Application to miRNA
network

 Use in cancer
classification




Conclusions: Networks Dynamics

across Environments

fé@ X -

.

Developed and adapted techniques to
connect quantitative features of
environment to metabolism.

Applied to available aquatic datasets, we
identified footprints that were predictive
of their environment (potentially could be
used as biosensor).

Strong correlation exists between a
community’s energy conversion
strategies and its environmental
parameters (e.g. temperature and
chlorophyll).

Suggest that limiting amounts of cofactor
can (partially) explain increased import of
amino acids in nutrient-limited conditions.

88 Lectures.GersteinLab.org (c) 2009



Conclusions: Connecting
Networks & Variation

» Positive selection (adaptive evolution) at
the network periphery

¢ On a sequence level, it can be seen
as positive selection of peripheral
nodes

() On a structural level, it can be seen
as the pattern of SDs that display
significantly higher allele frequencies
in non-central genes

* miRNA network

¢ More highly regulated genes are
under more constraint in miRNA-
target networks

() Exception for housekeeping genes

89 Lectures.GersteinLab.org (c) 2009



tYNA

(vers. 2:
"TopNet-like
Yale Network Analyzer")

- an automated web tool

/2 tYNA - Control Panel osoft Internet Explorer i 18] x| <
Ble Edt View Favortes Tools Help \ o
3 = T > =
Qe - © - %] 2] ‘h|/)5eerch ¢ Favorites @‘ R @) .
Address [£] lab Order=idacategoryOrder=id DVANCED_VIEWRistTyp: J ] e ‘Lmks ”‘@ = e}
H -3 ted
tYNA =
<>
Getting started AP| WSDL Download tYNA guide Plugins for Cytoscape Contact Known problems
You are logged in as kevin. Logout View: Simple Advanced
List | Owned ~| [ Biological ¥| networks with | (Atribute name) x| = [ (Attribute value) ¥ List >
= =
Workspace manager Networks in database (upload download ) I > <
Load an existing network @ Creation >
1D Mame Creator date <
Load 14. Uetz 2000 yeast two ... ¥ 14 Uetz 2000 yeast two hybrid kevin  21-Feb0B  Delete o
15 Ito 2001 yeast two hybrid kevin  21-Feb-06  Delete
Into workspace 0 ¥ >
16 Ho 2002 pull down kevin  21-Feb-06  Delete
Categorized by Nil > . P
17 Gavin 2002 pull down kevin  21-Feb-06  Delete Display options:
Default col
Load 18 Jansen 2003 PIT keWin 21-Feb0B  Delote it SO0
. Node: [blue ~| Edge: [ ] Text: | =l
. ok ke . ) 19 MIPS yeast PPI kevin  21-Feb-06  Delete Special coloring: @
HTRNE MOriing-neswonks It yOrworkapaces. 21 BIND yeast data kevin  21-Feb-06  Delste € None
k 0 i . geq, 1, value, neighbors=false,
P tersectiont 9 22 DIP yeast data kevin  21-FebDB  Delete & Color gradient: [Degree =] of [Original network =] from [areen = to[red =
"Uetz 2000 yeast two hybrid”, 23 Kim 2006 structural interaction  kevin ~ 21-Feb-08  Delete [e J= =
"o 2001 yeast two hybrid") ! Color class:  Class name: D
24 Han 2004 FY| data kevin  21-Feb-06  Delete Redraw 3
Waorkspace 1 (empty) s
25 Luscombe 2004 regulatory kevin  21-Feb-06  Delete )
Workspace 2: (empty)
Workspace 3: (empty) Clustering Coefficients
database ( upload d ) B Node |Edge g“""ec‘e‘:' Degrees @ ) (7] (2]
ategory Counts |Count omponents
Mulliple-nemnrkanulysis | D Creator Creation date \4 Avg. |S.D. |Min. |Max. |Avg. |S.D. |Min. |Max ‘Avg ‘SD ‘Min ‘Max ‘Avg ‘SD ‘Min Max
& e = ‘n"g“fv':’k ‘ 275‘ 187 ‘ 109 ‘130 ’074’ 1 ‘ 7 ‘0.04 0.19 |0.00 | 1.00 ‘2,51 ‘157‘ 1 ‘ 9 ‘3.50 ‘2022 ‘0.00 200.00
4 Internet

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);
Similar tools include Cytoscape.org, ldekar, Sander et al]
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More Information on this Talk

SUBJECT: Networks

DESCRIPTION:
CSHL, Cold Spring Harbor, NY; 2010.01.06, 12:00-13:00; [I:CSHL2]
(Long networks talk, derived from [I:MBINETS], including rlm* & new

intro. for 1lst time)

(PPT works on mac & PC and has many photos. Paper references in the talk were mostly from
Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each
topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic pubnet* can be looked up at
http://papers.gersteinlab.org/papers/pubnet )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to

relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see
http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily
queried from flickr, vizz http : //www. flickr.com/photos/mbgmbg/tags/kwpotppt
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