

Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

University of Chicago 2008.12.02, 12:00-13:00

Mark B Gerstein Yale

Slides at Lectures.GersteinLab.org

(See Last Slide for References & More Info.)

The problem: Grappling with Function on a Genome Scale?

- 250 of ~530 originally characterized on chr. 22 [Dunham et al. Nature (1999)]
- >25K Proteins in Entire Human Genome (with alt. splicing)

Some obvious issues in scaling single molecule definition to a genomic scale

- Fundamental complexities
 - ◊ Often >2 proteins/function
 - Multi-functionality:2 functions/protein
 - Role Conflation: molecular, cellular, phenotypic

Some obvious issues in scaling single molecule definition to a genomic scale

- Fundamental complexities
 - ◊ Often >2 proteins/function
 - Multi-functionality:2 functions/protein
 - Role Conflation: molecular, cellular, phenotypic
- Fun terms... but do they scale?....
 - Starry night (P Adler, '94)

underlying gene function

Naming Pathologies: Related to Single Genes

(b) drop dead: flies with mutations in drop dead die rapidly after their brain rapidly deteriorates. (c) malvolio: gene needed for normal taste behaviour. Malvolio in Shakespeare's Twelfth Night tasted "with distempered appetite". (d) LOV: light, oxygen, or voltage (LOV) family of blue-light photoreceptor domains. (e) yuri: this gene was discovered on the anniversary of Yuri Gagarin's space flight. Mutants have problems with gravitaxis and cannot stay aloft. (f) tribbles: cells divide uncontrollably, like the eponymous Star Trek characters. (g) kuzbanian: mutants have uncontrollable bristle growth. Koozbanians are alien Muppets with uncontrollable hair growth; spelling was changed to avoid copyright infringement. (h) ring: really interesting new gene. (i) yippee: a graduate student's reaction on cloning the gene

[Seringhaus et al. GenomeBiology (2008)]

[Seringhaus et al. GenomeBiology (2008)]

Hierarchies & DAGs of controlled-vocab terms but still have issues...

<u>Towards Developing Standardized</u> <u>Descriptions of Function</u>

- Subjecting each gene to standardized expt. and cataloging effect
 - ◊ KOs of each gene in a variety of std. conditions => phenotypes
 - ♦ Std. binding expts for each gene (e.g. prot. chip)

Interaction Vectors [Lan et al, IEEE 90:1848]

Networks (Old & New)

Classical KEGG pathway

Same Genes in High-throughput Network

[NY Times, 2-Oct-2005]

Networks occupy a midway point in terms of level of understanding

1D: Complete Genetic Partslist

~2D: Bio-molecular Network Wiring Diagram

3D: Detailed structural understanding of cellular machinery

Networks as a universal language

<u>Combining networks forms an ideal way</u> <u>of integrating diverse information</u>

Predicting Networks

How do we construct large molecular networks? From extrapolating correlations between functional genomics data with fairly small sets of known interactions. Making best use of the known training data.

Network

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

"Quality Score" =

Frac. of Gold-Std Positives with Feature

Frac. of Gold-Std Negatives with Feature

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Protein-protein interaction (PPI) network

Network reconstruction

Model organism: baker's yeast

- Size:
 - ~6,000 for yeast
 - \rightarrow Computational cost: ~18M pairs
 - ~15,000 edges
 - \rightarrow Sparseness: 0.08% of all pairs (Yu et al., 2008)
- "Known interactions":
 - Small-scale experiments: accurate but few
 - \rightarrow Overfitting: ~5,000 in BioGRID, involving ~2,300 proteins
 - Large-scale experiments: abundant but noisy
 - → Noise: false +ve/-ve for yeast two-hybrid data up to 45% and 90% (Huang et al., 2007)

Many Previous approaches in predicting PPI

Network reconstruction

- Docking (e.g. Schoichet and Kuntz 1991)
- Evolutionary (e.g. Ramani and Marcotte, 2003)
- Topological (e.g. Yu et al., 2006)
- Bayesian (e.g. Jansen et al., 2003)
- Kernel methods
 - Global modeling:
 - em (Tsuda et al., 2003)
 - kCCA (Yamanishi et al., 2004)
 - kML (Vert and Yamanishi, 2005)
 - Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
 - Local modeling:
 - Local modeling (Bleakley et al., 2007)

• DREAM

Features for predicting PPI – functional genomics

Map of Known and Predicted Membrane Protein Interactome in Yeast

Individual Features and their Integration for Yeast Membrane Protein Interaction Prediction

Problem with Network Prediction

- Training sets too small
- Known examples are unevenly spread amongst space one is doing prediction on
- Particularly afflicts kernel methods

Kernel Methods

Network reconstruction

- Kernel: similarity matrix
- Positive semi-definiteness of kernel → similarity values correspond to inner products in an embedded space
- Good for integrating different kinds of data
 - DNA sequences: strings
 - Gene expression: real numbers
 - Phylogenetic profiles: binary numbers

Local v Global Modelling

Global modeling

- Pairwise kernel (Ben-Hur and Noble, 2005)
 - O(n²) instances, O(n⁴) kernel elements

Local modeling

- Bleakley et al., 2007: global model may not fit sub-classes well → learn one local model per protein
 - Flexible
 - Lack of training data

Our method: 1. prediction propagation

Network reconstruction – Training set expansion

Goals:

- Preserve the flexibility of local modeling
- Tackle the issue of insufficient training examples

Idea 1: prediction propagation

- Motivation: some objects have more examples than others
- Learn models for proteins with more examples first
- Use distance to separating hyperplane to measure confidence
- Propagate the most confident predictions

Our method: 2. kernel Initialization

Network reconstruction – Training set expansion

Idea 2: kernel initialization

- Motivation: what if most objects have very few examples?
- Add the most similar pairs to training set

Remarks

Network reconstruction – Training set expansion

- Can use in combination
- Prediction propagation theoretically related to co-training (Blum and Mitchell, 1998)
- Semi-supervised
 - Similarity with PSI-BLAST
- Algorithm complexity O(nf(n)) of local modeling vs. O(f(n²)) of global modeling
Experiments

Network reconstruction – Training set expansion

Predicting the BioGRID-10 dataset

- Gold-standard: all physical interactions in BioGRID from studies that report less than 10 interactions
- Features:

Code	Data type	Source	Kernel	
phy	Phylogenetic profiles	COG v7 (Tatusov et al., 1997)	RBF (σ=3,8)	
loc	Sub-cellular localization	(Huh et al., 2003)	Linear	
exp-gasch	Gene expression (environmental response)	(Gasch et al., 2000)	RBF (σ=3,8)	
exp-spellman	Gene expression (cell-cycle)	(Spellman et al., 1998)	RBF (σ=3,8)	
y2h-ito	Yeast two-hybrid	(Ito et al., 2000)	Diffusion (β=0.01)	
y2h-uetz	Yeast two-hybrid	(Uetz et al., 2000)	Diffusion (β=0.01)	
tap-gavin	Tandem affinity purification	(Gavin et al., 2006)	Diffusion (β =0.01)	
tap-krogan	Tandem affinity purification	(Krogan et al., 2006)	Diffusion (β=0.01)	
int	Integration		Summation	

[Yip et al., Bioinformatics ('09, in press)]

Results

Network reconstruction – Training set expansion

Accuracy – %AUC (area under receiver operator curve):

	phy	loc	exp-gasch	exp-spellman	y2h-ito	y2h-uetz	tap-gavin	tap-krogan	int
Mode 1									
direct	58.04	66.55	64.61	57.41	51.52	52.13	59.37	61.62	70.91
kCCA	65.80	63.86	68.98	65.10	50.89	50.48	57.56	51.85	80.98
kML	63.87	68.10	69.67	68.99	52.76	53.85	60.86	57.69	73.47
em	71.22	75.14	67.53	64.96	55.90	53.13	63.74	68.20	81.65
local	71.67	71.41	72.66	70.63	67.27	67.27	64.60	67.48	75.65
local+pp	73.89	75.25	77.43	75.35	71.60	71.51	74.62	71.39	83.63
local+ki	71.68	71.42	75.89	70.96	69.40	69.05	70.53	72.03	81.74
local+pp+ki	72.40	75.19	77.41	73.81	70.44	70.57	73.59	72.64	83.59

- Highest accuracy by training set expansion
- Overfitting of local modeling without training set expansion
- Comparing prediction propagation and kernel initialization

Complementarity of the two methods

[Yip et al., Bioinformatics ('09, in press)]

Properties of Networks

What type of analyses can we do with a network? The main properties we can calculate?

Global topological measures

Indicate the gross topological structure of the network

Regulatory and metabolic networks are *directed*

Scale-free networks

Power-law distribution

Hubs dictate the structure of the network

[Barabasi]

Hubs tend to be Essential

Integrate gene essentiality data with protein interaction network. Perhaps hubs represent vulnerable points?

[Lauffenburger, Barabasi]

Relationships extends to "Marginal Essentiality"

Marginal essentiality measures relative importance of each gene (e.g. in growth-rate and condition-specific essentiality experiments) and scales continuously with "hubbiness"

Network Dynamics #1: Cellular States

How do molecular networks change across different cellular states? How can this be used assign function to a protein?

Dynamic Yeast TF network

- Analyzed network as a static entity
- But network is *dynamic*
 - Different sections of the network are active under different cellular conditions
- Integrate gene expression data

Luscombe et al. Nature 431: 308

Gene expression data for five cellular conditions in yeast

[Brown, Botstein, Davis....]

Backtracking to find active sub-network

Define differentially expressed genes

- Identify TFs that regulate these genes
- Identify further TFs that regulate these TFs Active regulatory sub-network

static

Network usage under different conditions cell cycle

Network usage under different conditions sporulation

diauxic shift

DNA damage

stress response

SANDY: 1. Standard graph-theoretic statistics:

- Global topological measures - Local network motifs

2. Newly derived follow-on statistics:

Hub usageInteraction rewiring

3. Statistical validation of results

Luscombe et al. Nature 431: 308

SANDY: 1. Standard graph-theoretic statistics: - Global topological measures - Local network motifs

2. Newly derived follow-on statistics: - Hub usage - Interaction rewiring

3. Statistical validation of results

Analysis of conditionspecific subnetworks in terms of global topological statistics

Luscombe et al. Nature 431: 308

<u>Analysis of</u> condition**specific** subnetworks in terms of occurrence of local motifs

Transient Hubs

- Questions:
 - ♦ Do hubs stay the same or do they change over between conditions?
 - ◊ Do different TFs become important?
- Our Expectations
 - ♦ Literature:
 - Hubs are permanent features of the network regardless of condition
 - Andom networks (sampled from complete regulatory network)
 - Random networks converge on same TFs
 - 76-97% overlap in TFs classified as hubs (*ie* hubs are permanent)

61 Gerstein.info/talks (c) 2008

Luscombe et al. Nature 431: 308

transient hubs

- Some permanent hubs
 - ♦ house-keeping functions
- Most are transient hubs
 - Different TFs become key regulators in the network
- Implications for conditiondependent vulnerability of network

Luscombe et al. Nature 431: 308

Network Dynamics #2: Environments

How do molecular networks change across different environments? What pathways are used more or less? Can this be used as a biosensor ?

What is metagenomics?

Genomics Approach

Metagenomics Approach

Partially Assemble and Annotate

Comparative Metagenomics

Trait-based Biogeography

Green et. al., Science 2008

Global Ocean Survey Statistics (GOS)

6.25 GB of data7.7M Reads1 million CPU hoursto process

Rusch, et al., PLOS Biology 2007

Expressing data as matrices indexed by site, env. var., and pathway usage

[Rusch et. al., (2007) PLOS Biology; Gianoulis et al., PNAS (in press, 2009]

Simple Relationships: Pairwise Correlations

Canonical Correlation Analysis: Simultaneous weighting

[Gianoulis et al., PNAS (in press, 2009)]
Canonical Correlation Analysis: Simultaneous weighting

Environmental-Metabolic Space

The goal of this technique is to interpret cross-variance matrices We do this by defining a change of basis.

Given
$$X = \{x_1, x_2, ..., x_n\}$$
 and $Y = \{y_1, y_2, ..., y_m\}$
 $C = \sum_{X} \sum_{Y, X} \sum_{X, Y} \max_{a, b} Corr(U, V) = \frac{a' \sum_{12} b}{\sqrt{a' \sum_{11} a} \sqrt{b' \sum_{22} b}}$

Strength of Pathway co-variation with environment

Environmentally Environmentally invariant variant

CCA structural correlation **#1: energy conversion strategy**, temp and depth

Conclusion #2: Outer Membrane components vary the environment

Conclusion #3: Covariation of AA biosynthesis and Import

Why is their fluctuation in amino acid metabolism? Is there a feature(s) that underlies those that are environmentally-variant as opposed to those which are not?

Conclusion #4: Cofactor (Metal) Optimization

Biosensors: Beyond Canaries in a Coal Mine

Networks & Human Variation

Which parts of the network vary most in sequence? Which are under selection, either positive or negative?

METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE

* From Nielsen et al. *PLoS Biol.* (2005) and Bustamante et al. *Nature* (2005)

ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK PERIPHERY

Positive selection in the human interactome

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)

CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE SELECTION

Degree vs. Positive Selection

Reasoning

 Peripheral genes are likely to under positive selection, whereas hubs aren't

Hubs

- This is likely due to the following reasons:
 - Hubs have stronger structural constraints, the network periphery doesn't
 - Most recently evolved functions (e.g. "environmental interaction genes" such as sensory perception genes etc.) would probably lie in the network periphery
- Effect is independent of any bias due to gene expression differences

* With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection (McDonald Kreitmann and LDD) corroborate this result.

Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)

CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

Reasoning

Centrality vs. SD occurrence

* Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome Source: Database of genetic variation, HPRD, Rual et al. *Nature* (2005), and Kim et al. PNAS (2007)

Why do we observer this? Perhaps central hub proteins are involved in more interactions & have more surface buried.

Another explanation: THE NETWORK PERIPHERY CORRESPONDS TO THE CELLULAR PERIPHERY

Source: Gandhi et al. (Nature Genetics 2006), Kim et al. PNAS (2007)

IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE **NETWORK PERIPHERY?**

ILLUSTRATIVE

	Relaxed Constraint	Adaptive Evolution		
Inter-Species Variation (Fixed differences)	 Increases inter-species variation – more variable loci are under less negative selection 	 Increases inter-species variation – more variable loci are under less negative selection 		
	 Can be seen in higher Ka/Ks ratio or SD occurrence 	 Can be seen in higher Ka/Ks ratio or SD occurrence 		
Intra-Species Variation (Polymorphisms)	 Increases intra-species variation – for the very same reason 	 Should not have effects on intra-species variation 		
	 Can be seen in both SNPs or CNVs 			

SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE PERIPHERY IS DUE TO RELAXED CONSTRAINT

* But it's hard to quantify Source: Kim et al. (2007) PNAS

Similar Results for Large-scale Genomic Changes (CNVs and SDs)

<u>Conclusions:</u> <u>Net Intro. + Predicting Networks</u>

- Developing Standardized Descriptions of Protein Function
 - ♦ Gene Naming
- Predicting Networks
 - Extrapolating from the Training Set
 - Principled ways of using the training set data in the fullest possible fashion
 - Prediction Propagation
 - Kernel Initialization

<u>Conclusions: Network Dynamics</u> <u>across Cellular States</u>

- Merge expression data with Networks
- Active network markedly different in different conditions
- Identify transient hubs associated with particular conditions
- Use these to annotate genes of unknown function

Conclusions: Networks Dynamics across Environments

- Developed and adapted techniques to connect quantitative features of environment to metabolism.
- Applied to available aquatic datasets, we identified footprints that were predictive of their environment (potentially could be used as biosensor).
- Strong correlation exists between a community's energy conversion strategies and its environmental parameters (e.g. temperature and chlorophyll).
- Suggest that limiting amounts of cofactor can (partially) explain increased import of amino acids in nutrient-limited conditions.

Conclusions: Connecting Networks & Human Variation

- We find ongoing evolution (positive selection) at the network periphery.
 - ♦ This trend is present on two levels:
 - On a sequence level, it can be seen as positive selection of peripheral nodes
 - On a structural level, it can be seen as the pattern of SDs that display significantly higher allele frequencies in non-central genes
 - 2 possible mechanisms for this : adaptive evolution at cellular periphery & relaxation of structural constraints at the network periphery
 - We show that the latter can only explain part of the increased variability,,,

- an automated web tool

Ol (vers. 2 : "TopNet-like Yale Network Analyzer")

ing (heleste protect Set	to use the second	an a	net gebinning View	Single Adv	e (ine * t) -	-	Vee	•	
Int Dened	Bolgcat I servoite web (Att-bate name) I	- (Amidude value) - Link				P			
Workspace manage	19.	Returnin in databases (upload fire	enland 3		18	-	-	-	
Load an existing i	entweek O	D Same	Contra Contra	6	1 1		-	- 1	
Lood tese Categorized by Lood	14 (Set2 200) yearst tees	14 Uets 2000 yearst teo hybrid 15 dia 2001 yearst teo hybrid 16 His 2002 pull down 17 Genv 2002 pull down 18 Januar 2003 PUT 19 Julie ward 695	kenn 25-Feb kenn 25-Feb kenn 25-Feb kenn 25-Feb	06 Datata 06 Datata 06 Datata 06 Datata 06 Datata	_	Bigslay optimati Carlout colors Node The Bigs		•	
Current working netw Workspace D	otes in your workspaces staff desploymen, peg, 1, value, neighborunfalse, interaction "Unit: 2000 yeart two hybrid", "To 2001 yeart two hybrid") (semptin)	21 BHO yeart data 22 DH yeart data 23 Kim 3008 structural meraction 24 mer 2004 FY1 data	kein 25-Fel kein 25-Fel kein 25-Fel kein 25-Fel	00 2000 00 2000 00 2000 00 2000 00 2000		Parcel colony O Chane # Color godiest: Degree C Color Class: Chans name [Redue	a (Supra subart à sus (res)	.	
Workspace 2	(impty)	25 Latcords 2004 repáintory	bavin 25-Eat	Ol Delete	+	Uniteline			
Workspace 3	Compaction in distances (surface) of	Constant)			Category Reals Edge Constant	theil Begran () ChetherbeyConff () Ann (5.0) Max Max Ann (5.0) Max	Economicality Distance		

Normal website + Downloaded code (JAVA) + Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006); Similar tools include Cytoscape.org, Idekar, Sander et al]

TopNet.GersteinLab.org

TopNet.GersteinLab.org

TopNet.GersteinLab.org

Job opportunities currently

TopNet.GersteinLab.org

NIH, NSF, Keck

for postdocs & students

101 Gerstein.info/talks (c) 2008

DPM: Discriminative Partition Matching

Metabolism

Environment

Cluster (Partition)

Taurine biosynthesis Heme biosynthesis Asparagine degradation Nitrogen fixation Acylglycerol degradation Asparagine biosynthesis Cysteine Metabolism

Test

Functional class	pval		
InfoStorage & Processing	.07		
Cellular Process	.08		
Metabolism	4x10-14		

More Information on this Talk

TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION:

University of Chicago, Inst. of Biophysical Dynamics, 2008.12.02, 12:00-13:00; [I:CHICAGOBIOPHYS] (Long networks talk, incl. the following topics: why networks w. amsci*, funnygene*, net. prediction intro, memint*, tse*, essen*, sandy*, metagenomics*, netpossel*, tyna*+ topnet*, & pubnet*. Fits easily into 60' w. 10' questions. PPT works on mac & pc. and has many photos w. EXIF tag kwchicagobiophys .)

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each topic abbrev. which is starred is actually a papers "ID" on the site. For instance, the topic **pubnet*** can be looked up at http://papers.gersteinlab.org/papers/pubnet)

<u>PERMISSIONS</u>: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

<u>PHOTOS & IMAGES</u>. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info. In particular, many of the images have particular EXIF tags, such as http://www.flickr.com/photos/mbgmbg/tags/kwpotppt.