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The problem: Grappling with
Function on a Genome Scale?

3 g 8 o & 3

o o bt o o~

HEE%E‘Eﬁé%E‘EE -y |g3‘8 530
2 ddHas8dasdYdeE G I I I

w% M || ‘ ||—r Trm— IIWTI";JI TW']F'TW_WTFW fﬂ W‘ﬂpﬂw i]ir" i Iﬂllw 1}. mﬁr

IIII

T 1N mE T

» 250 of ~530

originally characterized on chr. 22
[Dunham et al. Nature (1999)]

e >25K Proteins in Entire Human Genome
(with alt. splicing)
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Traditional single
molecule way to integrate

EF2 YEAST

evidence & describe
function

Descriptive Name:
Elongation Factor 2

Lots of references
to papers

Summary sentence | | _
describing function: e ot e el e it
This protein promotes the —
GTP-dependent
translocation of the " o
nascent protein chain from < o
the A-site to the P-site of
the ribosome.
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Some obvious issues In scaling single
molecule definition to a genomic scale

 Fundamental complexities
¢ Often >2 proteins/function

¢ Multi-functionality:
2 functions/protein

¢ Role Conflation:
molecular, cellular, phenotypic
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Some obvious issues In scaling single
molecule definition to a genomic scale
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 Fundamental complexities
¢ Often >2 proteins/function

¢ Multi-functionality:
2 functions/protein

¢ Role Conflation:
molecular, cellular, phenotypic

* Fun terms... but do they scale?....
¢ Starry night (P Adler, '94)
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[Seringhaus et al. GenomeBiology (2008)]
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Single

M | Explicit meaning

M-scientific SEMA5A2

Not "funny"; usually acronym or concatenation
of long descriptive scientific name

M-literal drop dead .

Inherent meaning of words is sufficient to
describe gene function in some way; no
cultureal knowledge is required

M-embed

Clever reference or allusion. Cutural savvy or
other knowledge required to make sense

Literary malvolio®
Acronym Lovd
Historical yuri®
Pop culture tribblesf

~M | No explicit meaning

~M-outside kuzbanian 9

Some outside, non-obvious reason for name
~M-irrel ringh
Irrelevant acronym; not tied to gene function

~Me-nr yippee i

Silly or funny names. No relevance to
underlying gene function

Naming

Pathologies:

Related to Single

Genes

[Seringhaus et al. GenomeBiology (2008)]
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Multi

Transferred naming system

T-relation

MNarning ceases to make sense if names
are shuffled among genes

arleekin
valiet K
tungus...

T-norelation

MNames could be shuffled among genes
with no loss of meaning

Problematic relationships

PKD1 and lov-1!

P-clash

Analogous genes with very different
names

P-confusion MT-1M

Many genes with same name,
or many names for one gene

BAF45 and BAF47 "

P-defunct

Gene named to reflect information later
shown to be inaccurate or untrue

kryptonite and superman

Naming
Pathologies:
Involving Multiple

Gene Names

[Seringhaus et al. GenomeBiology (2008)]
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PubMed Hits

Gene Name Skew
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[Seringhaus et al. GenomeBiology (2008)]
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Hierarchies & DAGs of

controlled-vocab terms

but still have issues...
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MIPS (Mewes et al.)
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celular process
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GO (Ashburner et al.)

[Seringhaus & Gerstein, Am. Sci. '08]
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Towards Developing Standardized
Descriptions of Function

» Subjecting each gene to standardized expt. and
cataloging effect
¢ KOs of each gene in a variety of std. conditions => phenotypes
¢ Std. binding expts for each gene (e.g. prot. chip)

 Function as a vector nucleic

acids proteins

protein 1 1.0 0 0 0 0 0 0 0 0

protein 2 0| 09 0 0 0 0 0 0 0

protein3 | 1.0 0 1.0 0 0 0 0 0 0

protein 4 0 0 0 0 08) 0 0 0 1.0

protein5 | 1.0 0 0 0 0 0 0 0.9 0

protein 6 | 0.9 0 Y . I . e
protein 7 0| 0.8 Y . T T P

Interaction Vectors [Lan et al, IEEE 90:1848]
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Networks (Old & New)

Fringe: Vital in boundary formation
in developing fly wing.

Numb: mutations impair

sensory organs in flies
Dwil
Fringe Numb
» Deltex
Defta = Motch . —
- o Notch: with defects, flies
; davelop nolches in wings
Serrate
PSEZ2 | PSEN ]
NCSTN = APH-1 u
5L
TACE

Classical KEGG pathway

Itch: linked to /,é_cs_ug:zm |
itchy skin in mice CENK: !
DLK1 = —{ TP |
\ i 1
Al “MDM2 |
I .| |TG+'1_-I ' .
By ‘ Deltex -—-GHE_-E
Delta m - (CTNNB1 | T MAML
D — 4 ]
B % "APP
Z___ | SMAD3

TPCAF [~ TEFT |

o
PSE2 — PSEN X |
L | Yyi L SKIP |
[ DuT | ARG —'\

Serrale

| MCSTH o
_ HELA_: CSL
TACE

S— - ABL1
TE I

| G22P1 |

Same Genes in High-throughput Network

[Seringhaus & Gerstein, Am. Sci. '08]
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Using
Networks to

Describe
Function
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Networks occupy a midway point in
terms of level of understanding

1D: Complete ~2D: Bio-molecular 3D: Detailed
Genetic Partslist Network structural
Wiring Diagram understanding of

cellular machinery

[Fleischmann et al., Science, 269 :496] [Jeong et al. Nature, 41:411]
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Networks as a universal language

‘% Internet

[Burch & Cheswick] HH“‘M Electronic

Disease

Spread
[Krebs]

Protein

Interactions
[Barabasi]

FoodWeb  Circuit 5 4«

[Cajal]
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Combining networks forms an ideal way

of integrating diverse information

Part of the

. TCA cycle

—

Metabolic
pathway

------------- » Transcriptional

regulatory
network

Physical protein-
protein Interaction

Co-expression
Relationship
Genetic interaction

(synthetic lethal)
Signaling pathways
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Prediction of protein interactions:

Bayesian integration

o

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H
Gold-standard +
Gold-standard —

Network

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Gold-Standards
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Prediction of protein interactions:

Bayesian integration

O
O
Feature 1, e.g. co-expression
Feature 2, e.g. Y2H
O Gold-standard +
""""" Gold-standard —
O
O O
Network

"Quality Score" =

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Gold-Standards

Frac. of Gold-Std
Positives with Feature

Frac. of Gold-Std
Negatives with Feature
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Prediction of protein interactions:
Bayesian integration

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H
Gold-standard +

Gold-standard —

[

Network / Gold-Standards

L1 = (@dyize) =2

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]
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Prediction of protein interactions:
Bayesian integration

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H

Gold-standard +
Gold-standard —

[

Network / Gold-Standards

L1 = Qinyie) =2

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]
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Prediction of protein interactions:
Bayesian integration

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H
Gold-standard +

Gold-standard —

[

Network \ / Gold-Standards

o'_-_.l_-_l‘;-‘_‘o L1 = (4/4)/(3/0) =2
s

-

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Pire
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Prediction of protein interactions:
Bayesian integration

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H

Gold-standard +
Gold-standard —

[

Network / Gold-Standards

L1 = (4/4)/(3/6) =2

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]
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Prediction of protein interactions:

Bayesian integration

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H
Gold-standard +
Gold-standard —

[

Network

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

/ Gold-Standards

L1 = (4/4)/(3/6) =2
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Prediction of protein interactions:
Bayesian integration

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H
Gold-standard +
Gold-standard —

Network \ / Gold-Standards

L1 = (4/4)/(3/6) =2
L2 = (3/4)/(3/6) =1.5

For each protein pair:
LR=L1xL
log(LR) = log(L1) + log(L>)

(Assuming uncorrelated features and Naive Bayes) Wei g hted Votin g

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]
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Prediction of protein interactions:
Bayesian integration

o

Feature 1, e.g. co-expression
Feature 2, e.g. Y2H
Gold-standard +

/ """"" Gold-standard —

/ Gold-Standards

L1 = (4/4)/(3/6) =2
L2 = (3/4)/(3/6) =1.5

Network

For each protein pair:
LR=L1xL

log(LR) = log(L1) + log(L>)

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]
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Protein-protein interaction (PPI) network

Network reconstruction

Model organism: baker’s yeast

e Size:
— ~6,000 for yeast
— Computational cost: ~18M pairs

— ~15,000 edges
— Sparseness: 0.08% of all pairs (Yu et al., 2008)

e “Known Interactions”:

— Small-scale experiments: accurate but few
— Overfitting: ~5,000 in BioGRID, involving ~2,300 proteins

— Large-scale experiments: abundant but noisy
— Noise: false +ve/-ve for yeast two-hybrid data up to
45% and 90% (Huang et al., 2007)



Many Previous approaches in predicting PPI

Network reconstruction

* Docking (e.g. Schoichet and Kuntz 1991)
« Evolutionary (e.g. Ramani and Marcotte, 2003)
 Topological (e.g. Yu et al., 2006)
» Bayesian (e.g. Jansen et al., 2003)
» Kernel methods
— Global modeling:
» em (Tsuda et al., 2003)
o KCCA (Yamanishi et al., 2004)
o kML (Vert and Yamanishi, 2005)

» Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
— Local modeling:

» Local modeling (Bleakley et al., 2007)

 DREAM



Features for predicting PPI — functional genomics

Network reconstruction

Sub-cellular localization
http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif
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Microarray gene expression Gasch et al., 2000

Phylogenetic profiles
Von Mering et al., 2003
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Map of Known and Predicted Membrane
Protein Interactome in Yeast
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Xia et al. JMB (2006)
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0.6

0.4

True Positive Rate
-
b

Combination of All Features sl

MIPS

GO

/ | | Genetic Interactions | -

MRNA co-expr.

k

L |

Xia et al. JIMB (2006)

001 002 0.03
False Positive Rate

Individual
Features

and their

Integration

for Yeast
Membrane

Protein
Interaction

Prediction
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Problem with Network
Prediction

e Training sets too small

 Known examples are unevenly spread amongst space
one Is doing prediction on

 Particularly afflicts kernel methods

[Yip et al., Bioinformatics ('09, in press)]
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Kernel Methods

Network reconstruction

o Kernel: similarity matrix

» Positive semi-definiteness of kernel — similarity values correspond to inner
products in an embedded space

» Good for integrating different kinds of data
— DNA sequences: strings
— Gene expression: real numbers
— Phylogenetic profiles: binary numbers
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Local v Global Modelling

Global modeling

« Pairwise kernel (Ben-Hur and Noble,
2005)
— O(n?) instances, O(n*) kernel
elements

Local modeling

* Bleakley et al., 2007: global model may
not fit sub-classes well — learn one local
model per protein = @

—  Flexible
—  Lack of training data




Our method: 1. prediction propagation

Network reconstruction — Training set expansion

Goals:

» Preserve the flexibility of local modeling

» Tackle the issue of insufficient training
examples

|dea 1: prediction
propagation

* Motivation: some objects have more
examples than others

» Learn models for proteins with more
examples first

» Use distance to separating hyperplane to
measure confidence

» Propagate the most confident predictions




Our method: 2. kernel Initialization

Network reconstruction — Training set expansion

ldea 2: kernel initialization

» Motivation: what if most objects have

0.55 0.40

0.66 0.89

very few examples?

1.00 0.79

» Add the most similar pairs to training set

0.79 1.00




Remarks

Network reconstruction — Training set expansion

e Can use In combination

 Prediction propagation theoretically related to
co-training (Blum and Mitchell, 1998)

e Semi-supervised
— Similarity with PSI-BLAST

o Algorithm complexity O(nf(n)) of local
modeling vs. O(f(n?)) of global modeling



Experiments

Network reconstruction — Training set expansion

Predicting the BioGRID-10 dataset

» Gold-standard: all physical interactions in BioGRID from studies that report
less than 10 interactions

e Features:
Code Data type Source Kernel
phy Phylogenetic profiles COG v7 (Tatusov et al., 1997) RBF (c=3,8)
loc Sub-cellular localization (Huh et al., 2003) Linear
exp-gasch Gene expression (environmental response) | (Gasch et al., 2000) RBF (6=3,8)
exp-spellman Gene expression (cell-cycle) (Spellman et al., 1998) RBF (c=3,8)

y2h-ito Yeast two-hybrid (Ito et al., 2000) Diffusion ($=0.01)
y2h-uetz Yeast two-hybrid (Uetz et al., 2000) Diffusion ($=0.01)
tap-gavin Tandem affinity purification (Gavin et al., 2006) Diffusion (f=0.01)
tap-krogan Tandem affinity purification (Krogan et al., 2006) Diffusion (f=0.01)
int Integration Summation




Results

Network reconstruction — Training set expansion

Accuracy — %AUC (area under receiver operator curve):

phy loc exp-gasch exp-spellman |y2h-ito y2h-uetz tap-gavin tap-krogan int

Mode 1

direct 58.04 66.55 64.61 57.41 51.52 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 50.48 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 55.90 53.13 63.74 68.20 81.65
local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
localtpp | 7389 7525 7743 7535 7160 7151 7462 7139 83.63|
local+ki 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
local+pp+ki 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59

» Highest accuracy by training set expansion
« Overfitting of local modeling without training set expansion
« Comparing prediction propagation and kernel initialization




Complementarity of the two methods

85
3
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@) (]
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95
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Sample size (number of gold standard positive interactions)
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Global topological measures

Indicate the gross topological structure of the network

O

o
O o
O

v

Degree (K) Path length (L) Clustering coefficient (C)
5 2 1/6

Interaction and expression networks are undirected

[Barabasi]
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v TFs

O Targets
Global
topological
measures for
. v v
directed T Aﬂw
networks
In-degree Out-degree
3 5

Regulatory and metabolic networks are directed
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Scale-free networks

Power-law distribution

€

log Pk) bk N

e Pk)~k" Wig
- A\ y !"f,
% , o 0. 7 ﬂ!fgﬁﬁ '
g &ié‘ 7T AN
L v AN
(o) “
O _ 1 7 :h\ N N

log(Degree)  '°¢k

HubsS dictate the structure of the network

[Barabasi]
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[Yu et al., 2003, TIG]

Hubs tend to be Essential

Integrate gene essentiality data with protein
interaction network. Perhaps hubs represent
vulnerable points?

[Lauffenburger, Barabasi]
25 -

o
o |

P
=
1

"hubbiness"
Average deg:ee (K)

on
L

Non- Essential Essential
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[Yu et al., 2003, TIG]

Relationships extends to "Marginal Essentiality”

Marginal essentiality measures relative importance of
each gene (e.g. in growth-rate and condition-specific
essentiality experiments) and scales continuously with

"hubbiness"

1 %

M
=
1

—5
h
|

—
=
1

"hubbiness”
Average degree (K)

Cn
1

N

0
E——

Not important

important

| —
Very important Essential
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Dynamic Yeast TF network

Transcription Factors

Target Genes

Analyzed network as a static
entity

But network is dynamic

O Different sections of the network
are active under different
cellular conditions

Integrate gene expression data

Luscombe et al. Nature 431: 308
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Gene expression data for five cellular
conditions in yeast

Cellular condition

Cell cycle

Multi-stage |< _
Sporulation

Diauxic shift

Binary < | DNA damage

Stress response

[Brown, Botstein, Davis....]
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Backtracking to find active sub-network

|

° My | a

O / O » Define differentially expressed genes

AR
> j’ » O /  Identify TFs that regulate these genes
X  |ldentify further TFs that regulate these TFs,
» S
» /
=y o
O Active regulatory sub-network

4 O
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Network usage under different conditions

static

Luscombe et al. Nature 431: 308
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Network usage under different conditions

cell cycle
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Network usage under different conditions

sporulation

52 Gerstein.info/talks (c) 2008



Network usage under different conditions

diauxic shift
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Network usage under different conditions
DNA damage
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Network usage under different conditions

stress response
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Network usage under different conditions

Cell cycle

Sporulation Diauxic shift DNA damage

SANDY:

1. Standard graph-theoretic statistics:

- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:

- Hub usage
- Interaction rewiring

3. Statistical validation of results

Luscombe et al. Nature 431: 308
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Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage

SANDY::

1. Standard graph-theoretic statistics:
- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage
- Interaction rewiring

3. Statistical validation of results
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17.1

15.0 AnalySiS of

' condition-
: specific
. . .. Subnetworks
Indegree In terms of
— aa o global

Pathlength topological
015 o014 : statistics

Outdegree

2.0

Clustering
coefficient
c
© = @
(&) © ) Q) 2
—_ e c
) > = g Qo
= (@ g "E <ZE - Qv %
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O 0 A 0o ©»09
< - >
Multi-stage . Binary
Controlled, ticking Quick, large-scale
over of genes . turnover of genes Luscombe et al. Nature 431: 308

at different stages
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57% 56%0 59%0

| Analysis of
Single- —

input : condition-
module specific

o iowe 2 subnetworks

' in terms of

occurrence
of local

Multi-input
module

44% ~ 45% : .
Feed- ik motifs
forward P 19% 1790 210
loop
c
@ = ®
- = c
> > =3 g 95
= o T = < e o 2
@) ) Qv 0o n =
< >
Multi-stage . Binary
Controlled, ticking = Quick, large-scale
over of genes turnover of genes

Luscombe et al. Nature 431: 308

at different stages
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Cell cycle  Sporulation Diauxic shift DNA damage Stress

multi-stage conditions

o O
X/
° 8

Summary
less pronounced Hubs more pronounced
longer Path Lengths shorter
more TF inter-regulation less
complex loops (FFLSs) Motifs simpler (SIMs)
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Transient Hubs

100

10 1

Number TFs
+*
*
3
*
L2

0.1 . .
1 10 100

Number outgoing connections

1000

e Questions:

N

Regulatory hubs

¢ Do hubs stay the same or do they change over between conditions?

¢ Do different TFs become important?

e Our Expectations
¢ Literature:

Luscombe et al. Nature 431: 308

e Hubs are permanent features of the network regardless of condition
¢ Random networks (sampled from complete regulatory network)

e Random networks converge on same TFs

e 76-97% overlap in TFs classified as hubs (/e hubs are permanent)
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cell cycle

sporulation |

diauxic shift ™l
[ =]

DNA damage ¢

_=
stress response

all conditions

slress response

YMRO1E6C
YLR183C
YIL131C
SHWI4
YDR451C
SHWIB
STEL2
HMEP1
MCM1
YDR146C
YLR131C

LKL
THE1
YHLILTEW
SIN3
YIRDZIW
YPLOIAW
AHMLIOIW
THROZIC
CHF]
YEHLOZLC
YIL122W

HAPY
HAFZ

THRIOGW
TAll
HEF1
YPLOBSC
YCRO&GSW
CIN5
YDRI1GC

YDOR259C
MSN2
YDRSO1W
MSN4
YGLOIEW
FDOR1
YLR4OIW
YGLOT1W

YIRO1BW

YELO43IW
YLRO13W
YEL209W
YMLOZTW
YFRO34C
YELOOSC
YBRO4SC
YGLO3SC
YEL112W
YDRO43C
YPROGSW

<

transient hubs

permanent hubs

Some permanent hubs
¢ house-keeping functions

Most are transient hubs

¢ Different TFs become key
regulators in the network

Implications for condition-
dependent vulnerability of
network

Luscombe et al. Nature 431: 308

62 Gerstein.info/talks (c) 2008



&

= EE 1]
25 E
S8
§E§4
= z
Sﬁgm

cell cycle

sporulation

diauxic shift ™l
[ =]

DNA damage

stress response

all conditions

slress response

YMRO16C
YLR183C
YIL131C
SHWI4
YDR451C
SHWIB
STEL2
HMEP1
MCM1
YDR146C
YLR131C

LKL
THE1
YHLILTEW
SIN3
YIRDZIW
YPLOIAW
YHL1OIW
YHROZIC
CHF]
YEHLOZLC
YIL122W

HAPY
HAFZ

THRIOGW
TAP]
HEF1
YPLOBSC
YCRO&GSW
CIN5
YDRI1GC

YDR255C
MSN2
YDRSOL1W
MSN4
YGLO9EW
FDR1
YLRAOIW
YGLOTLIW

YIRO1BW

YELO43IW
YLRO13W
YEL209W
YMLOZTW
YFRO34C
YELOOSC
YBRO4SC
YGLO3SC
YEL112W
YORD43C
YPROGSW

= Swi4, Mbp1

=Imel, Umeb

—— Msn2, Msn4

Luscombe et al. Nature 431: 308
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cell cycle

sporulation

diauxic shift ™l
[ =]

DNA damage

stress response

all conditions

©
s
8

-

sporulation

diauxic shift

DMNA damage

slress response

YMRO16C
YLR183C
YIL131C
SHWI4
YDR451C
SHWIB
STEL2
MEP1
MCM1
YDR146C
YLR131C

UHEG
THE1
YHLILTEW
SIN3
YIRDZIW
YPLOIAW
YHL1OIW
YHROZIC
CHF]
YEHLOZLC
YIL122W

HAPY
HAFZ

YHREAOeW
TAFl
HEF]
YPLOGSC
YCRO&ESW
CERS
YORI1GC

YDR255C
MSN2
YDRSO1W
MSN4
YGLOIEW
FDR1
YLRAOIW
YGLOTLIW
YIRD1BW

YHLO4AIW
YLRO13W
YEL209W
YMLOZTW
YFRO34C
YELOOSC
YBRO4SC
YGLO3SC
YEL112W
YDRO43C
YPROGSW

Unknown functions

Luscombe et al. Nature 431: 308
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What Is metagenomics?

Genomics Approach

Culture Microbes Extract DNA

= Qe —

Metagenomics Approach

Collect Sample Extract DNA

T

y

Sequence

ATCGTATA
CGCGAAG
ACGTCTGA
AGTGCTGCT

Sequence

ATCGTOATALAT GATAL TAGH
ATGUTOCATCUATCTAGLALT
ACALTAGCTALC TACGTACTA

Tl A B TG, 1A Caol | Tl A ALy
ACGATOGATGOTAGITAGCTAGCAT
AGCTAGCTAGTCAGTTAGITAGATS

Assemble and Annotate

Partially Assemble and Annotate



Comparative Metagenomics

Water

Soil

Do the proportions of pathways
represented in these two samples

differ?

o

Canonical discriminant function 2 {31.9%)

Celifveall

4l Windenos

Sagnalling

] Membrane transport

Suilphur

Canomnical descrrmmnant functon 1 (@8.0%M)

Dinsdale et. al.,

Motility -
otility _ o

Nature 2008



Trait-based Biogeography

i N
Charles River, J,F-'"’f .
F o
MA 3
EI
C
S
Long Island O 1 Y
Sound, CT S | _'"‘"l._ll_l'l" F A
(] N g rrFRan s 20N TE
~ 0 g FRRAFFFIRTET

Do the proportions of pathways Ave
represented in these two samples fage
CHANGE as a function of their
environments?

Green et. al., Science 2008



Global Ocean Survey Statistics (GOS)

6.25 GB of data
7.7M Reads

33 : 1 million CPU hours
FEE I to process

SCIENCE IN THE
PETABYTEERA

Rusch, et al., PLOS Biology 2007



Pathway Sequences .
y S€q Environmental

Community Function
( y ) \ Features

Mﬂabﬂh{ ' Environmental
Metadata Temp WNaCl Depth

Sites B] el 1000 15°C) 27.2 1_l::|r11
B2 2200 '||:H:| 400 Gites >3l 366 s

v + .;;;i;________w """

READS —— PROTEIN FAMILIES —— PATHWAYS EX press 1IN g

CCGTGAGCACGATECGE e
ﬁTCGTGm_uc_uAﬁaTgﬂc-mc’U'"""'"'" * d a.t a. aS
CCGTGACCACGATGCGaTAETEATRCT—— P] = f1 + 1:2 + f3
il“TLUTm!U'EE{%HiufﬁacsuzT m at r i C e S
P=f +f +f
Indexed by

site, env. var.,

TGCTGCTAGCATGC T mmeemeemem

GLEATCGATCGATCGTAGE
LT [l -]y [ oy p—
COGTGAGCACGATGCGC --
I:JT.ﬁ-T“T.f-Lh.ﬂ-T“'I'
COGTOAGCACGATGOGE-—
GEGATCGAT EE.ﬁ-T“TA“

PATHWAYS

P H and pathway

s Py=2+143 P, =2+443 usage
P,=5+2+46 P, =5+7+6

[Rusch et. al., (2007) PLOS Biology;
Gianoulis et al., PNAS (in press, 2009]



Simple Relationships: Pairwise Correlations

Metabolic
Pathways

Sites

2200 | 100

Ill

[ Gianoulis et al., PNAS (in press, 2009) ]

Environmental Features

Chlorophyll Temp
10
P — —
05 a -
- 00 W __—_
—_ —
a _ e
. —] o —
y E—— s |
0 i e T j
S - I —
S— =—
e — |
—_——
10 — —

Cobalamin Biosynthesis
Photosystem |l
Photosystem |

Carbon Fixation (Dark rx)

Glutamine Degradation

Pradicled Temparalura

.
L]
.
L 1]
- ¢ : . .
.l ‘e o L ]
. ® * % .
.,
L]
. =68
[
-2 -1 0 i

Actual Temperature




Canonical Correlation Analysis:
Simultaneous weighting

Lcore

# of papers published

Undergraduate

Performance Index (UPD | Perfarmance Indesx (GPI)

Graduate School

[ Gianoulis et al., PNAS (in press, 2009) ]



Canonical Correlation Analysis:
Simultaneous weighting

Srare # of papers published Undergraduate Graduate School
Performance Index (UPD | Performance Index (GPI)
GRE ﬂ
GRE GPA | =
£ =
. Bt
| —— L —
L Environmental Metabolic
Features Pathways
Temp etc Photosynthesis €lC
( Chlorophyll Lipid Metabolism
|l

[ Gianoulis et al., PNAS (in press, 2009) ]



Environmental-Metabolic Space

CCA Footprint
c'. L I .
= ™
femp En: / Nacl4 |P3e
1 ,-ﬂ_l EDJ [ P1* Depth\".
Bl |~ BS £ 4y
max a3~ 1 B4 -Egif (P/i.;\\ II
corr /-"EE- 1l = 5'-,‘ Pde ‘\_‘__j /
- :
NaCl Depth gai\ P /
. = Temp, /
, . ’ . e = : -
Linear combination of Linear combination of S 2 ansssssrrsdsavinnnnns
lenvironmental| features. |pathways o 65 g0 a5 10

Normalized Weights (Dim 1)

The goal of this technique is to interpret cross-variance matrices
We do this by defining a change of basis.

Given X :{xl,xz,,...,xn} and Y :{yl’,yz,-..,ym}

DI
Xy 2yy maxCorr(U,V) = a2y :
©= 2y Zyx a,b NEDIERLD A

[ Gianoulis et al., PNAS (in press, 2009) ]



Strength of Pathway co-variation
with environment

CCA structural correlation

Environmentally Environmentally
invariant variant

D

T

CCA structural correlation

[ Gianoulis et al., PNAS (in press, 2009) ]




Conclusion #1: energy conversion strategy,

temp and depth
KEGG Module
@
*—
ATPase
Photosynthesis Icumpiex
- e
e
R ® & ® ® 9
Oxidative 6l & le.' & [Py iy
Phosphorylation [ [ i |
o | ® [N [ e | @
® ® @ L ] &
ATPase
complex




Conclusion #2: Outer Membrane
components vary the environment

e

{Gmllp;d _.: - 2
l' M - -

[ Gianoulis et al., PNAS (in press, 2009) |



Conclusion #3: Covariation of AA
biosynthesis and Import

Why is their fluctuation

in amino acid metabolism?

Is there a feature(s) that

underlies those that are
environmentally-variant

as opposed to those which are not?

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #4: Cofactor (Metal)
Optimization

IS DEPENDENT-ON

Methionine synthesis
Cobalamin biosynthesis

Methionine salvage, synthesis,
and uptake, transport

Cobalt transporters

HG)J\__/\/S»LGH

Cooavs

NH

3

Methionine
RELIES ON

Methionine Salvage
Spermidine/Putrescine transporters

Arg/His/Ornithine transporters

IS NEEDED FOR

Methionine degradation
S-adenosyl Methionine Biosynthesis
(synthesize SAM one of the most
important methyl donors)

Polyamine biosynthesis

[ Gianoulis et al., PNAS (in press, 2009) ]



Biosensors: Beyond Canaries in a Coal
Mine

[ Gianoulis et al., PNAS (in press, 2009) ]
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METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE
e _ _ ™
Hapmap/Perlegen Database of Genomic Variants
International
Map to ENSEMBL genes
CNVs + SDs
Ensembl Genes
ENSGO00XXXX:
rsSNPOOXXX Res u | t
CNV_XXX
DN/DS XXXX ( h
Recombination rate
Int ‘ * Dataset of network
nhteractome M ins in th position / parameters
; viap o _protems mkt © (e.g. degree centrality
R interaction networ or betweenness
P > | centrality) in
: relationship to SNPs,
J _ CNV’s, recombination
~30000 interactions rates and positive
from HPRD and selection tests
Y2H screens
- ) "

* From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)
Source: PMK



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

Single-
basepair

Structural
variation

Source: PMK

Intra-species variation

Positive
Selection

I )
N
- e T
S

) O

Single-Nucleotide Polymorphisms

I Positive
C Selection
) —————— _—
m -

1 1

Copy Number Variants

Fixed mutations
(differences to other species)

Fixed Differences

Segmental Duplications



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK
PERIPHERY

Positive selection in the human interactome

-
@ Highlikelihood of
positive selection
Lower likelihood of
® positive selection
-
Not under positive
O :
selection
-
- No data about
positive selection
L ]
]
-

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE

SELECTION [ 1 Hubs
Degree vs. Positive Selection Reasoning
( )
* Peripheral genes are likely to under
e positive selection, whereas hubs
o 4.5:- Spearman Rank P=value: 1.2e-086 aren’t
& 4lo * This is likely due to the following
g 15;.. reasons:
$ — Hubs have stronger structural
— 3 . g .
= B constraints, the network periphery
= 258 doesn’t
E -"- I
3 2 — Most recently evolved functions
: 1_5' (e.g. “environmental interaction
g P genes” such as sensory
‘..,E 1% perception genes etc.) would
o 55 probably lie in the network
periphery
% 0.5 1 1i5 2 2.5 3

Betweenness Centrality x 10°

* Effect is independent of any bias

B due to gene expression differences

Metwork periphery Metwork center

- J

* With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection
(McDonald Kreitmann and LDD) corroborate this result.
Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)




Centrality vs. SD occurrence

g
8
7+-Spearman Rank P-value: 3.5e-04

i

4o

Mumber of Overlapping S0s
on

30
Jemo

| NN T 0

0 0.5 1 1.5 2 25 3 35

4
Betweenness Centrality x 10°

Metwork periphery MNetwork center

CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

Reasoning

Ve

* This result also confirms our initial
hypothesis — peripheral nodes tend
to lie in regions rich in SDs.

* Since segmental duplications are a
different mechanism of ongoing
evolution, the less constrained
peripheral proteins are enriched in
them.

* Note that despite the small size of
our dataset for known SD’s we get
significant correlations. It is to be
expected that the correlations will
get clearer as more data emerges*

-

* Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome

Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)



Why do we observer this? Perhaps central hub proteins are involved
In more interactions & have more surface buried.

BURIED SITES ARE
CONSERVED AND
MUCH LESS LIKELY
TO HARBOR NON-
SYNONYMOUS

MUTATIONS

Source: Kim et al. PNAS (2007)

dN/dS
Ratio

Average
Relative
Surface
Exposure

0.49
0.35
p<<0.01
Exposed Buried
sites sites
2.66
2.26
p<<0.01
Site with Sites with
Synonymous Non-synonymous
Mutations only Mutations



Another explanation: THE NETWORK PERIPHERY CORRESPONDS TO THE
CELLULAR PERIPHERY

4 I
Betweenness Degree
Centrality Centrality
(x 10%)
Chromosome 55 10
Nucleus 5.0 8.6
Cytoplasm 52 8.1
D Extracellular
@ Plasmamembrane @ Ribosome Membrane 4.0 6.5
O Cytoplasm O Lysosome
O Mitochondria @ Peroxisome
Q@ Mucleus @ Golgi apparatus lul
@ centrosome @ Endoplasmic reticulum EXtr.ace ular
Region 3.8 5.9
) Endosome @ Other organelles/unknown
\ J

Source: Gandhi et al. (Nature Genetics 2006), Kim et al. PNAS (2007)



IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR
THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE

NETWORK PERIPHERY? ILLUSTRATIVE
s A
Relaxed Constraint Adaptive Evolution
Inter-Species * Increases inter-species * Increases inter-species
;/?;latlon (Fixed variation — more variable variation — more variable
e loci are under less negative loci are under less negative
selection selection
* Can be seen in higher * Can be seen in higher
Ka/Ks ratio or SD Ka/Ks ratio or SD
occurrence occurrence
Intra-Species * Increases intra-species * Should not have effects on
Variation variation — for the very same intra-species variation
(Polymorphisms) reason

e Can be seen in both SNPs
or CNVs

- J

Source: Kim et al. PNAS (2007)



SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE
PERIPHERY IS DUE TO RELAXED CONSTRAINT

Inter vs. Intra-Species Variation in Networks

4.37
Inter-
Sp_emes 271
(Fixed
differences)
Betw=enness
Centrality
{x 104
p=<D.01
Ganes with Ganag with
dHidS=1 dMids =1
4.08 —
Intra-Species
(SNPs)
[ Variability ]
Betweenness
Centrality
(x 10%)
p<0.05
Genes with Genes with
pN/pS=1 pN/pS<=1

* But it's hard to quantify
Source: Kim et al. (2007) PNAS

Reasoning

Ve

* There is a difference in variability
(in terms of SNPs) between the
network periphery and the center

* However, this difference is much
smaller than the difference in
selection

* This most likely means, that part of
the effect we're seeing is due to
relaxed constraint (and higher
variability)

¢ But, not the entire effect*




Similar Results for Large-scale Genomic Changes (CNVs and SDs)

Inter vs. Intra-Species Variation in Networks

Inter-
Species
(SDs)

Bolweonnoess
Centrality
{x 10%)

4.18

2.61

pe<.01

Genes inter secting All others
shs

Intra-Species
(CNVs)
[ Variability ]

Betweanness
Centrality
(% 109

4.20

3.25

pre =007

Genes imMersecting Al olhers
CHVs

Reasoning

Ve

Source: Kim et al. (2007) PNAS

* There a small difference in
variability (in terms of CNVSs)
between the network periphery and
the center

* But, there is a (as shown before)
marked difference in fixed (and
hence, presumably, selected) SDs
at the network periphery and center




Conclusions:
Net Intro. + Predicting Networks

* Developing Standardized
Descriptions of Protein
Function

¢ Gene Naming

e Predicting Networks

¢ Extrapolating from the Training
Set

¢ Principled ways of using the
training set data in the fullest
possible fashion

* Prediction Propagation
o Kernel Initialization

92 Gerstein.info/talks (c) 2005



Conclusions: Network Dynamics
across Cellular States

* Merge expression data with
Networks

o Active network markedly
different in different
conditions

o |dentify transient hubs
associated with particular
conditions

e Use these to annotate genes
of unknown function

93 Gerstein.info/talks (c) 2005



Conclusions: Networks Dynamics
across Environments

» Developed and adapted techniques to
connect quantitative features of
environment to metabolism.

» Applied to available aquatic datasets, we
identified footprints that were predictive
of their environment (potentially could be
used as biosensor).

» Strong correlation exists between a
community’s energy conversion
strategies and its environmental
parameters (e.g. temperature and
chlorophyll).

e Suggest that limiting amounts of cofactor
can (partially) explain increased import of
amino acids in nutrient-limited conditions.

94 Lectures.GersteinLab.org (c) 2007



Conclusions: Connecting
Networks & Human Variation

» We find ongoing evolution (positive

S 5= !'.,__ _:_': ol d :
m;gz P e selection) at the network periphery.

S = = etk AR : :
T S ) ¢ This trend is present on two levels:

: * On a sequence level, it can be seen
as positive selection of peripheral

nodes

« On a structural level, it can be seen
as the pattern of SDs that display
significantly higher allele frequencies
In non-central genes

¢ 2 possible mechanisms for this :
adaptive evolution at cellular periphery &
relaxation of structural constraints at the
network periphery

« We show that the latter can only
explain part of the increased
variability,,,

95 Lectures.GersteinLab.org (c) 2007



tYNA

- an automated web tool (vers. 2 :
"TopNet-like
Yale Network Analyzer")

alflE ]
L i ¥ —
O 0 o] 2 b, e e @ e L G- @ =, -

L LSS S S s - o & s TR

SYNA e

madd ol bk G —
A O T < =
(=] [ - J iy AT - - sl .
— 3 s
e wriipm
r b1 - —
- =5 —
1 —r s Frulay ~plem
Lesi -
I = 2] bam Hten | B

E
BEEEEH]

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);
Similar tools include Cytoscape.org, Idekar, Sander et al]
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DPM: Discriminative Partition Matching

Metabolism
Environment DPM FOOTPRINT
/ /\
. P1 P2 P3| P4|P5
;_-'!;l-';_ _ Site-Set 1 - DD.=..:..=.
B 53 =
S B4 | e 0 e [ IO
Cluster (Partition) Test
Taurine biosynthesis Functional class  pval
Heme biosynthesis InfoStorage & | .07
Asparagine degradation Processing

Nitrogen fixation
Acylglycerol degradation
Asparagine biosynthesis Metabolism 4x10-14

Cysteine Metabolism

Cellular Process | .08

[ Gianoulis et al., PNAS (in press, 2009) ]



More Information on this Talk

TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION:
University of Chicago, Inst. of Riophysical Dynamics,

2008.12.02, 12:00-13:00; [[:CHICAGOBIOPHYS]

(Long networks talk, indl. the fdlowing topics:

why networks w. amsci*, funnygene*, net. predicdon intvo, memint#*, tse*, essen¥*,
sandy*, metagenomics*, netpossel*, tyna*+ topnet*, & pubnet* . Fits easily irto 60’
w. 10’ questions. PPT works onmac & pc. and has many photos w. EXIF tag
kwchicagobiophys .)

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic
list can be easily cross-referenced against this website. Each topic abbrev. which is
starred is actually a papers “ID” on the site. For instance,

the topic pubnet* can be looked up at

http://papers.gersteinlab. org/papers/pubnet )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via
citation to relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation
see http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwp otppt, that can be

easily queried from flickr, viz: http://www. flickr.com/photos/mbgmbg/tags/kwpotppt .
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