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The problem: Grappling with 
Function on a Genome Scale?

• 250 of ~530 
originally characterized on chr. 22 
[Dunham et al. Nature (1999)]

• >25K Proteins in Entire Human Genome
(with alt. splicing)

.…… ~530
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Traditional single 
molecule way to integrate 

evidence & describe 
function

Descriptive Name:
Elongation Factor 2

Summary sentence 
describing function:

This protein promotes the 
GTP-dependent 

translocation of the 
nascent protein chain from 
the A-site to the P-site of 

the ribosome. 

EF2_YEAST

Lots of references
to papers
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Some obvious issues in scaling single 
molecule definition to a genomic scale

• Fundamental complexities
◊ Often >2 proteins/function 
◊ Multi-functionality: 

2 functions/protein 
◊ Role Conflation: 

molecular, cellular, phenotypic
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Some obvious issues in scaling single 
molecule definition to a genomic scale

• Fundamental complexities
◊ Often >2 proteins/function 
◊ Multi-functionality: 

2 functions/protein 
◊ Role Conflation: 

molecular, cellular, phenotypic
• Fun terms… but do they scale?....

◊ Starry night (P Adler, ’94)

[Seringhaus et al. GenomeBiology (2008)]
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Naming 
Pathologies: 

Related to Single 
Genes 

[Seringhaus et al. GenomeBiology (2008)]

(b) drop dead: flies with mutations in drop dead die 
rapidly after their brain rapidly deteriorates. (c) malvolio: 
gene needed for normal taste behaviour. Malvolio in 
Shakespeare's Twelfth Night tasted "with distempered 
appetite". (d) LOV: light, oxygen, or voltage (LOV) family 
of blue-light photoreceptor domains. (e) yuri: this gene 
was discovered on the anniversary of Yuri Gagarin's 
space flight. Mutants have problems with gravitaxis and 
cannot stay aloft. (f) tribbles: cells divide uncontrollably, 
like the eponymous Star Trek characters. (g) kuzbanian: 
mutants have uncontrollable bristle growth. Koozbanians
are alien Muppets with uncontrollable hair growth; 
spelling was changed to avoid copyright infringement. (h) 
ring: really interesting new gene. (i) yippee: a graduate 
student’s reaction on cloning the gene
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Naming 
Pathologies:

Involving Multiple 
Gene Names

[Seringhaus et al. GenomeBiology (2008)]

(j) kryptonite and superman: the kryptonite mutation 
suppresses the function of the SUPERMAN gene. (k) 
arleekin, valient, tungus: mutations in arleekin, valient, 
tungus and 29 other genes affect long-term memory. 
Named after Pavlov's dogs. (l) PKD1 (human) and lov-1 
(worm): these are homologs, although their names do not 
suggest it. (m) MT-1: this label can refer to at least 11 
different human genes. (n) BAF45 and BAF47: names for 
the same gene, reflecting a revision of the molecular 
weight of product. 
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Gene Name Skew

[Seringhaus et al. GenomeBiology (2008)]
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Hierarchies & DAGs of 
controlled-vocab terms
but still have issues... 

[Seringhaus & Gerstein, Am. Sci. '08]

GO (Ashburner et al.)MIPS (Mewes et al.)
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Towards Developing Standardized 
Descriptions of Function

• Subjecting each gene to standardized expt. and 
cataloging effect
◊ KOs of each gene in a variety of std. conditions => phenotypes 
◊ Std. binding expts for each gene (e.g. prot. chip)

• Function as a vector 

Interaction Vectors [Lan et al, IEEE 90:1848]
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Networks (Old & New)

[Seringhaus & Gerstein, Am. Sci. '08]

Classical KEGG pathway Same Genes in High-throughput Network
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Using 
Networks to 

Describe 
Function

[NY Times, 2-Oct-2005]
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Networks occupy a midway point in 
terms of level of understanding

1D: Complete 
Genetic Partslist

~2D: Bio-molecular
Network

Wiring Diagram

3D: Detailed 
structural 

understanding of 
cellular machinery

[Jeong et al. Nature, 41:411][Fleischmann et al., Science, 269 :496]
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Networks as a universal language

Disease 
Spread

[Krebs]

Protein
Interactions

[Barabasi] Social Network

Food Web

Neural Network
[Cajal]

Electronic
Circuit

Internet
[Burch & Cheswick]
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Combining networks forms an ideal way 
of integrating diverse information

Metabolic 
pathway

Transcriptional 
regulatory 
network

Physical protein-
protein Interaction

Co-expression 
Relationship

Part of the 
TCA cycle

Genetic interaction 
(synthetic lethal)
Signaling pathways
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Predicting 
Networks

How do we construct 
large molecular networks? From extrapolating 

correlations between functional genomics data with 
fairly small sets of known interactions. 

Making best use of the known training data.
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Network Gold-Standards

Prediction of protein interactions: 
Bayesian integration

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –
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Network Gold-Standards

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Prediction of protein interactions: 
Bayesian integration

Frac. of Gold-Std  
Negatives with Feature

Frac. of Gold-Std 
Positives with Feature

"Quality Score" =
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Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Network Gold-Standards

L1 = (4/4)/(3/6) =2

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Prediction of protein interactions: 
Bayesian integration
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Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Network Gold-Standards

L1 = (4/4)/(3/6) =2

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Prediction of protein interactions: 
Bayesian integration
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Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Network Gold-Standards

L1 = (4/4)/(3/6) =2

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Prediction of protein interactions: 
Bayesian integration
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Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Network Gold-Standards

L1 = (4/4)/(3/6) =2

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Prediction of protein interactions: 
Bayesian integration
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Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Network Gold-Standards

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Prediction of protein interactions: 
Bayesian integration

L1 = (4/4)/(3/6) =2
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Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Network Gold-Standards
L1 = (4/4)/(3/6) =2
L2 = (3/4)/(3/6) =1.5

For each protein pair:
LR = L1 × L2
log(LR) = log(L1) + log(L2)

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Prediction of protein interactions: 
Bayesian integration

Weighted Voting(Assuming uncorrelated features and Naïve Bayes)
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Feature 2, e.g. Y2H
Feature 1, e.g. co-expression

Gold-standard +
Gold-standard –

Network Gold-Standards
L1 = (4/4)/(3/6) =2
L2 = (3/4)/(3/6) =1.5

For each protein pair:
LR = L1 × L2
log(LR) = log(L1) + log(L2)

[Jansen, Yu, et al., Science; Yu, et al., Genome Res.]

Prediction of protein interactions: 
Bayesian integration



Protein-protein interaction (PPI) network

Model organism: baker’s yeast
• Size:

– ~6,000 for yeast
→ Computational cost: ~18M pairs

– ~15,000 edges
→ Sparseness: 0.08% of all pairs (Yu et al., 2008)

• “Known interactions”:
– Small-scale experiments: accurate but few

→ Overfitting: ~5,000 in BioGRID, involving ~2,300 proteins
– Large-scale experiments: abundant but noisy

→ Noise: false +ve/-ve for yeast two-hybrid data up to
45% and 90% (Huang et al., 2007)

Network reconstruction



Many Previous approaches in predicting PPI

• Docking (e.g. Schoichet and Kuntz 1991)
• Evolutionary (e.g. Ramani and Marcotte, 2003)
• Topological (e.g. Yu et al., 2006)
• Bayesian (e.g. Jansen et al., 2003)
• Kernel methods

– Global modeling:
• em (Tsuda et al., 2003)
• kCCA (Yamanishi et al., 2004)
• kML (Vert and Yamanishi, 2005)
• Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)

– Local modeling:
• Local modeling (Bleakley et al., 2007)

• DREAM

Network reconstruction



Features for predicting PPI – functional genomics

Phylogenetic profiles
Von Mering et al., 2003

Microarray gene expression

x = (0.23, 2.41, 1.52, …) x = (1, 1, 0, 0, 0, 0, 0, 1, 1, …)

Gasch et al., 2000

Sub-cellular localization
http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif

Network reconstruction
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t-SNAREs

v-SNAREs

H+-transporting
ATPase (vacuolar)

lipid 
biosynthesis

cytochrome c
oxidase

cytochrome bc1
complex

oligosaccharyltransferase

transport

COPII

carbohydrate 
transport

transport

protein
targeting

amino acid
glycosylation

Map of Known and Predicted Membrane 
Protein Interactome in Yeast

New

Known

Xia et al. JMB (2006)
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Combination of All Features

Genetic Interactions

GO

MIPS

mRNA co-expr.

Individual 
Features 
and their 

Integration 
for Yeast 

Membrane 
Protein 

Interaction 
Prediction

Xia et al. JMB (2006)
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Problem with Network 
Prediction

• Training sets too small
• Known examples are unevenly spread amongst space 

one is doing prediction on
• Particularly afflicts kernel methods

[Yip et al., Bioinformatics ('09, in press)]



Kernel Methods

• Kernel: similarity matrix
• Positive semi-definiteness of kernel → similarity values correspond to inner 

products in an embedded space
• Good for integrating different kinds of data

– DNA sequences: strings
– Gene expression: real numbers
– Phylogenetic profiles: binary numbers

Network reconstruction

[Yip et al., Bioinformatics ('09, in press)]



Local v Global Modelling
Global modeling
• Pairwise kernel (Ben-Hur and Noble, 

2005)
– O(n2) instances, O(n4) kernel 

elements

Local modeling
• Bleakley et al., 2007: global model may 

not fit sub-classes well → learn one local 
model per protein

– Flexible
– Lack of training data
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[Yip et al., Bioinformatics ('09, in press)]



Our method: 1. prediction propagation

Goals:
• Preserve the flexibility of local modeling
• Tackle the issue of insufficient training 

examples

Idea 1: prediction 
propagation

• Motivation: some objects have more 
examples than others

• Learn models for proteins with more 
examples first

• Use distance to separating hyperplane to 
measure confidence

• Propagate the most confident predictions

1 2

43

1

2

4
3

1

2

4
3

1

2

4
3

1

2

4
3

Network reconstruction – Training set expansion

[Yip et al., Bioinformatics ('09, in press)]



Our method: 2. kernel Initialization

Idea 2: kernel initialization
• Motivation: what if most objects have 

very few examples?
• Add the most similar pairs to training set

1 2

43

1 2 3 4

1 1.00 0.57 0.55 0.40

2 0.57 1.00 0.66 0.89

3 0.55 0.66 1.00 0.79

4 0.40 0.89 0.79 1.00

1 2

43

Network reconstruction – Training set expansion

[Yip et al., Bioinformatics ('09, in press)]



Remarks

• Can use in combination
• Prediction propagation theoretically related to 

co-training (Blum and Mitchell, 1998)
• Semi-supervised

– Similarity with PSI-BLAST

• Algorithm complexity O(nf(n)) of local 
modeling vs. O(f(n2)) of global modeling

Network reconstruction – Training set expansion

[Yip et al., Bioinformatics ('09, in press)]



Experiments

Predicting the BioGRID-10 dataset
• Gold-standard: all physical interactions in BioGRID from studies that report 

less than 10 interactions
• Features:

Code Data type Source Kernel

phy Phylogenetic profiles COG v7 (Tatusov et al., 1997) RBF (σ=3,8)

loc Sub-cellular localization (Huh et al., 2003) Linear

exp-gasch Gene expression (environmental response) (Gasch et al., 2000) RBF (σ=3,8)

exp-spellman Gene expression (cell-cycle) (Spellman et al., 1998) RBF (σ=3,8)

y2h-ito Yeast two-hybrid (Ito et al., 2000) Diffusion (β=0.01)

y2h-uetz Yeast two-hybrid (Uetz et al., 2000) Diffusion (β=0.01)

tap-gavin Tandem affinity purification (Gavin et al., 2006) Diffusion (β=0.01)

tap-krogan Tandem affinity purification (Krogan et al., 2006) Diffusion (β=0.01)

int Integration Summation

Network reconstruction – Training set expansion

[Yip et al., Bioinformatics ('09, in press)]



Results

Accuracy – %AUC (area under receiver operator curve):
phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int

Mode 1
direct 58.04 66.55 64.61 57.41 51.52 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 50.48 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 55.90 53.13 63.74 68.20 81.65
local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
local+pp 73.89 75.25 77.43 75.35 71.60 71.51 74.62 71.39 83.63
local+ki 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
local+pp+ki 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59
Mode 2
direct 59.99 67.81 66.18 59.22 54.02 54.64 62.28 63.69 72.34
Pkernel 72.98 69.84 78.61 77.30 57.01 54.65 71.16 70.36 87.34
local 76.89 78.73 79.72 77.32 72.93 72.89 68.81 73.15 82.82
local+pp 77.71 80.71 82.56 80.62 74.74 74.41 76.36 75.12 88.78
local+ki 76.76 78.73 80.62 76.44 73.39 72.76 72.42 76.22 86.12
local+pp+ki 77.45 80.57 81.93 78.92 74.14 74.01 75.59 76.59 88.56

Network reconstruction – Training set expansion

• Highest accuracy by training set expansion
• Overfitting of local modeling without training set expansion
• Comparing prediction propagation and kernel initialization

[Yip et al., Bioinformatics ('09, in press)]



Complementarity of the two methods
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Network reconstruction – Training set expansion

[Yip et al., Bioinformatics ('09, in press)]
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Properties of 
Networks
What type of analyses 

can we do with a network? 
The main properties we can calculate?
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Global topological measures
Indicate the gross topological structure of the network

Degree (K ) Path length (L ) Clustering coefficient (C )

[Barabasi]

Interaction and expression networks are undirected

5 2 1/6
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Global 
topological 

measures for 
directed 
networks

In-degree

TFs

Targets

Regulatory and metabolic networks are directed

Out-degree
53
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Scale-free networks

Hubs dictate the structure of the network

log(Degree)

lo
g(

Fr
eq

ue
nc

y)

Power-law distribution

[Barabasi]
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Hubs tend to be Essential

EssentialNon- Essential

Integrate gene essentiality data with protein 
interaction network. Perhaps hubs represent 
vulnerable points?
[Lauffenburger, Barabasi]

"h
ub

bi
ne

ss
"

[Y
u 
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l.,
 2
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3,
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Relationships extends to "Marginal Essentiality"

EssentialNot important

Marginal essentiality measures relative importance of 
each gene (e.g. in growth-rate and condition-specific 
essentiality experiments) and scales continuously with 
"hubbiness"

important Very important

"h
ub

bi
ne

ss
"

[Y
u 

et
 a

l.,
 2

00
3,

 T
IG

]
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Network Dynamics 
#1: Cellular States
How do molecular networks change across 
different cellular states? How can this be 

used assign function to a protein?
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Target Genes

Transcription Factors • Analyzed network as a static 
entity

• But network is dynamic
◊ Different sections of the network 

are active under different 
cellular conditions

• Integrate gene expression data

Dynamic Yeast TF network

Luscombe et al. Nature 431: 308
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Gene expression data for five cellular 
conditions in yeast

Cellular condition

Cell cycle

Sporulation

Diauxic shift

DNA damage

Stress response

Multi-stage 

Binary

[Brown, Botstein, Davis….]
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Backtracking to find active sub-network

• Define differentially expressed genes

• Identify TFs that regulate these genes

• Identify further TFs that regulate these TFs

Active regulatory sub-network
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Network usage under different conditions
static

Luscombe et al. Nature 431: 308
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Network usage under different conditions
cell cycle
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Network usage under different conditions
sporulation
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Network usage under different conditions
diauxic shift
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Network usage under different conditions
DNA damage
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Network usage under different conditions
stress response
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Network usage under different conditions
Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:
1. Standard graph-theoretic statistics:

- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage

- Interaction rewiring 

3. Statistical validation of results

Luscombe et al. Nature 431: 308
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Network usage under different conditions
Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:
1. Standard graph-theoretic statistics:

- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage

- Interaction rewiring 

3. Statistical validation of results
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Outdegree

Indegree

Pathlength

Clustering
coefficient

Binary
Quick, large-scale 
turnover of genes

Multi-stage
Controlled, ticking 

over of genes 
at different stages

Analysis of 
condition-
specific 

subnetworks 
in terms of 

global 
topological 
statistics

Luscombe et al. Nature 431: 308
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59%56%57%
39%

32%
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Single-
input 
module

Multi-input 
module

Feed-
forward 
loop

Binary
Quick, large-scale 
turnover of genes

Multi-stage
Controlled, ticking 

over of genes 
at different stages

20%
27%24%

17%
24%

21%17%19%

45%44%

Analysis of 
condition-
specific 

subnetworks 
in terms of 
occurrence 

of local 
motifs

Luscombe et al. Nature 431: 308
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Summary

multi-stage conditions binary conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

less pronounced Hubs more pronounced

longer Path Lengths shorter

more TF inter-regulation less

complex loops (FFLs) Motifs simpler (SIMs)
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Regulatory hubs

Luscombe et al. Nature 431: 308

Transient Hubs

• Questions:
◊ Do hubs stay the same or do they change over between conditions?
◊ Do different TFs become important?

• Our Expectations
◊ Literature: 

• Hubs are permanent features of the network regardless of condition

◊ Random networks (sampled from complete regulatory network)
• Random networks converge on same TFs
• 76-97% overlap in TFs classified as hubs (ie hubs are permanent)



Do not reproduce without permission 62
G

er
st

ei
n.

in
fo

/ta
lk

s 
(c

) 2
00

8

transitient hubs

permanent hubs

• Some permanent hubs
◊ house-keeping functions

• Most are transient hubs
◊ Different TFs become key 

regulators in the network

• Implications for condition-
dependent vulnerability of 
network

transient hubs

permanent hubs

cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

Luscombe et al. Nature 431: 308
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transitient hubs

permanent hubs

Swi4, Mbp1

Ime1, Ume6

Msn2, Msn4

cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

Luscombe et al. Nature 431: 308
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transitient hubs

permanent hubs

Unknown functions

cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

Luscombe et al. Nature 431: 308
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Network Dynamics 
#2: Environments

How do molecular networks change across 
different environments? What pathways are 

used more or less? Can this be used as a 
biosensor ?



What is What is metagenomicsmetagenomics??



Comparative Comparative MetagenomicsMetagenomics

Water

Soil

Do the proportions of pathways 
represented in these two samples 
differ?

Dinsdale et. al., Nature 2008



TraitTrait--based Biogeographybased Biogeography

Green et. al., Science 2008

Average Yearly Rainfall (mm)

Le
af

 s
pa

n

Le
af

 a
re

a

Do the proportions of pathways 
represented in these two samples 
CHANGE as a function of their 
environments?

Long Island 
Sound, CT

Charles River, 
MA



Global Ocean Survey Statistics (GOS)

6.25 GB of data
7.7M Reads
1 million CPU hours 
to process

Rusch, et al., PLOS Biology 2007



Expressing Expressing 
data as data as 

matrices matrices 
indexed by indexed by 

site, site, envenv. var., . var., 
and pathway and pathway 

usage usage 

Pathway Sequences
(Community Function) Environmental 

Features

[Rusch et. al., (2007) PLOS Biology; 
Gianoulis et al., PNAS (in press, 2009]



Simple Relationships: Pairwise CorrelationsSimple Relationships: Pairwise Correlations
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Canonical Correlation Analysis: Canonical Correlation Analysis: 
Simultaneous weightingSimultaneous weighting

+ b’ + c’GPI = a’

+ b + cUPI = a

[ Gianoulis et al., PNAS (in press, 2009) ]



Canonical Correlation Analysis: Canonical Correlation Analysis: 
Simultaneous weightingSimultaneous weighting

+ b’ + c’GPI = a’

+ b + cUPI = a Metabolic 
Pathways

Environmental
Features

Temp

Chlorophyll

etc Photosynthesis

Lipid Metabolism

etc

[ Gianoulis et al., PNAS (in press, 2009) ]



EnvironmentalEnvironmental--Metabolic SpaceMetabolic Space

The goal of this technique is to interpret cross-variance matrices
We do this by defining a change of basis.

maxCorr(U ,V ) =
a’ b12∑

a’ a11∑ b’ b22∑a,b

Given X ={x1,x2,....,xn} and Y ={y1,,y2,...,ym} 

 

C = X∑ X ,Y∑

Y∑ Y ,X∑
 

 

[ Gianoulis et al., PNAS (in press, 2009) ]



Circuit MapCircuit Map

Environmentally 
invariant

Environmentally 
variant

Strength of Pathway co-variation 
with environment 

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #1: energy conversion strategy, Conclusion #1: energy conversion strategy, 
temp and depthtemp and depth



Conclusion #2: Outer Membrane Conclusion #2: Outer Membrane 
components vary the environmentcomponents vary the environment

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #3: Conclusion #3: CovariationCovariation of AA of AA 
biosynthesis and Importbiosynthesis and Import

Why is their fluctuation
in amino acid metabolism?
Is there a feature(s) that 
underlies those that are 
environmentally-variant 
as opposed to those which are not?

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #4: Cofactor (Metal) Conclusion #4: Cofactor (Metal) 
OptimizationOptimization

Methionine degradation

Polyamine biosynthesis

Spermidine/Putrescine transporters

Methionine synthesis
Cobalamin biosynthesis

Cobalt transporters

Methionine Salvage

IS DEPENDENT-ON

Methionine

IS NEEDED FOR

S-adenosyl Methionine Biosynthesis
(synthesize SAM one of the most

important methyl donors)
RELIES ON

Arg/His/Ornithine transporters

Methionine salvage, synthesis, 
and uptake, transport

[ Gianoulis et al., PNAS (in press, 2009) ]



Biosensors: Beyond Canaries in a Coal Biosensors: Beyond Canaries in a Coal 
MineMine

[ Gianoulis et al., PNAS (in press, 2009) ]
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Networks & 
Human Variation
Which parts of the network vary most in 

sequence? Which are under selection, either 
positive or negative?



METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND 
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

* From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)
Source: PMK

ILLUSTRATIVE

Hapmap/Perlegen

ENSG000XXXX:
rsSNP00XXX
CNV_XXX
DN/DS XXXX
Recombination rate 

Map to ENSEMBL genes

Interactome

SNPs

~30000 interactions
from HPRD and
Y2H screens

Database of Genomic Variants

Map to proteins in the 
interaction network

Ensembl Genes

• Dataset of network 
position / parameters 
(e.g. degree centrality 
or betweenness
centrality) in 
relationship to SNPs, 
CNV’s, recombination 
rates and positive 
selection tests

Result

CNVs + SDs



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

Intra-species variation Fixed mutations
(differences to other species)

Single-
basepair

Structural
variation

Copy Number Variants

Single-Nucleotide Polymorphisms

Segmental Duplications

Fixed Differences

Source: PMK

Positive
Selection

Positive
Selection



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK 
PERIPHERY

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)

High likelihood of 
positive selection

Lower likelihood of 
positive selection

Not under positive 
selection

No data about 
positive selection

Positive selection in the human interactome



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE 
SELECTION

• Peripheral genes are likely to under 
positive selection, whereas hubs 
aren’t

• This is likely due to the following 
reasons:

– Hubs have stronger structural 
constraints, the network periphery 
doesn’t

– Most recently evolved functions 
(e.g. “environmental interaction 
genes” such as sensory 
perception genes etc.) would 
probably lie in the network 
periphery

• Effect is independent of any bias 
due to gene expression differences

Degree vs. Positive Selection Reasoning

* With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection 
(McDonald Kreitmann and LDD) corroborate this result.

Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)

Hubs



CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

• This result also confirms our initial 
hypothesis – peripheral nodes tend 
to lie in regions rich in SDs. 

• Since segmental duplications are a 
different mechanism of ongoing 
evolution, the less constrained 
peripheral proteins are enriched in 
them.

• Note that despite the small size of 
our dataset for known SD’s we get 
significant correlations. It is to be 
expected that the correlations will 
get clearer as more data emerges*

Centrality vs. SD occurrence Reasoning

* Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome
Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)



BURIED SITES ARE 
CONSERVED AND 
MUCH LESS LIKELY 
TO HARBOR NON-
SYNONYMOUS 
MUTATIONS

p<<0.01
Buried
sites

dN/dS
Ratio

0.35

0.49

Exposed
sites

2.66

2.26

p<<0.01

Site with 
Synonymous

Mutations only

Sites with
Non-synonymous

Mutations

Average
Relative
Surface
Exposure

Source: Kim et al. PNAS (2007)

Why do we observer this? Perhaps central hub proteins are involved 
in more interactions & have more surface buried.



Another explanation: THE NETWORK PERIPHERY CORRESPONDS TO THE 
CELLULAR PERIPHERY

5.2

4.0

3.8

5.0

5.5Chromosome

8.1

6.5

5.9

8.6

10

Nucleus

Cytoplasm

Membrane

Extracellular
Region

Betweenness
Centrality
(x 104)

Degree
Centrality

Source: Gandhi et al. (Nature Genetics 2006), Kim et al. PNAS (2007)



IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR 
THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE 
NETWORK PERIPHERY?

Source: Kim et al. PNAS (2007)

Relaxed Constraint Adaptive Evolution

ILLUSTRATIVE

• Increases inter-species 
variation – more variable 
loci are under less negative 
selection

• Can be seen in higher 
Ka/Ks ratio or SD 
occurrence

Inter-Species 
Variation (Fixed 
differences)

Intra-Species 
Variation 
(Polymorphisms)

• Increases intra-species 
variation – for the very same 
reason

• Can be seen in both SNPs 
or CNVs

• Increases inter-species 
variation – more variable 
loci are under less negative 
selection

• Can be seen in higher 
Ka/Ks ratio or SD 
occurrence

• Should not have effects on 
intra-species variation



SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE 
PERIPHERY IS DUE TO RELAXED CONSTRAINT

• There is a difference in variability
(in terms of SNPs) between the 
network periphery and the center

• However, this difference is much 
smaller than the difference in 
selection

• This most likely means, that part of 
the effect we’re seeing is due to 
relaxed constraint (and higher 
variability)

• But, not the entire effect*

Inter vs. Intra-Species Variation in Networks Reasoning

* But it’s hard to quantify
Source: Kim et al. (2007) PNAS

Inter-
Species 
(Fixed 
differences)

Intra-Species 
(SNPs) 
[ Variability ]



Similar Results for Large-scale Genomic Changes (CNVs and SDs)

• There a small difference in 
variability (in terms of CNVs) 
between the network periphery and 
the center

• But, there is a (as shown before) 
marked difference in fixed (and 
hence, presumably, selected) SDs
at the network periphery and center

Inter vs. Intra-Species Variation in Networks Reasoning

Source: Kim et al. (2007) PNAS

Inter-
Species 
(SDs)

Intra-Species 
(CNVs) 
[ Variability ]
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Conclusions: 
Net Intro. + Predicting Networks

• Developing Standardized 
Descriptions of Protein 
Function
◊ Gene Naming

• Predicting Networks
◊ Extrapolating from the Training 

Set
◊ Principled ways of using the 

training set data in the fullest 
possible fashion
• Prediction Propagation
• Kernel Initialization
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Conclusions: Network Dynamics 
across Cellular States

• Merge expression data with 
Networks

• Active network markedly 
different in different 
conditions

• Identify transient hubs 
associated with particular 
conditions

• Use these to annotate genes 
of unknown function 
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Conclusions: Networks Dynamics 
across Environments

• Developed and adapted techniques to 
connect quantitative features of 
environment to metabolism.

• Applied to available aquatic datasets, we 
identified footprints that were predictive 
of their environment (potentially could be 
used as biosensor). 

• Strong correlation exists between a 
community’s energy conversion 
strategies and its environmental 
parameters (e.g. temperature and 
chlorophyll).  

• Suggest that limiting amounts of cofactor 
can (partially) explain increased import of 
amino acids in nutrient-limited conditions. 
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Conclusions: Connecting 
Networks & Human Variation

• We find ongoing evolution (positive 
selection) at the network periphery.
◊ This trend is present on two levels:

• On a sequence level, it can be seen 
as positive selection of peripheral 
nodes 

• On a structural level, it can be seen 
as the pattern of SDs that display 
significantly higher allele frequencies 
in non-central genes

◊ 2 possible mechanisms for this : 
adaptive evolution at cellular periphery & 
relaxation of structural constraints at the 
network periphery

• We show that the latter can only 
explain part of the increased 
variability,,,
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TopNet – an automated web tool

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006); 
Similar tools include Cytoscape.org, Idekar, Sander et al]

(vers. 2 :
"TopNet-like 

Yale Network Analyzer")

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin
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DPM: Discriminative Partition MatchingDPM: Discriminative Partition Matching

Cluster (Partition) Test

Environment

Metabolism

Taurine biosynthesis
Heme biosynthesis

Asparagine degradation
Nitrogen fixation

Acylglycerol degradation
Asparagine biosynthesis

Cysteine Metabolism

InfoStorage & 
Processing

.07

Cellular Process .08

Metabolism 4x10-14

pvalFunctional class

[ Gianoulis et al., PNAS (in press, 2009) ]
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More Information on this Talk
TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION: 
University of Chicago, Inst. of Biophysical Dynamics, 
2008.12.02, 12:00-13:00; [I:CHICAGOBIOPHYS]
(Long networks talk, incl. the following topics: 
why networks w. amsci*, funnygene*, net. prediction intro, memint*, tse*, essen*, 
sandy*, metagenomics*, netpossel*, tyna*+ topnet*, & pubnet*. Fits easily into 60’
w. 10’questions. PPT works on mac & pc. and has many photos w. EXIF tag 
kwchicagobiophys.) 

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic 
list can be easily cross-referenced against this website. Each topic abbrev. which is 
starred is actually a papers “ID” on the site. For instance,
the topic pubnet*can be looked up at 
http://papers.gersteinlab.org/papers/pubnet )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at 
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via 
citation to relevant papers or link to gersteinlab.org). 
. 
PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation 
see http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .


