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The problem: Grappling with
Function on a Genome Scale?
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« >25K Proteins in Entire Human Genome

[Dunham et al. Nature (1999)]
(with alt. splicing)

« 250 of ~530
originally characterized on chr. 22

B
2

cdodD
TEDANDA




EF2 YEAST

Traditional single

molecule way to integrate

Descriptive Name:
Elongation Factor 2

evidence & describe
function

=101
Links | Norton Antivirus b5} ~ | A4

Fle Edit Tools Help

View Favorites

Lots of references
to papers

Summary sentence
describing function:
This protein promotes the
GTP-dependent
translocation of the
nascent protein chain from
the A-site to the P-site of
the ribosome.

IniProt

!f;e niversal protein knowledgebase

Text Search UniProt Knowledgebase

home About UniProt Getting Started Databases Support/Documentation

General information about the UniProt/Swiss-Prot entry

Entry name EF2_YEAST
Primary accession number P32324
Entered in Swiss-Prot Release 27, 01-OCT-1993

Sequence was last modified Release 27, 01-0CT-1993

Annotations were last modified | Release 47, 01-MAY-2005

Protein description

Protein name ‘ Elongation factor 2
Synonyms ‘ EF-2
References
[1] | NUCLEOTIDE SEQUENCE (EFT1 AND EFT2).

MEDLINE=92112760; PubMed=1730643; [NCBI, ExPASy, EBI, Israel, Japan]
Perentesis J.P., Phan L.D., Laporte D.C., Livingston D.M., Bodley 1.W.;
“Saccharomyces cerevisiae elongation factor 2. Genetic cloning, characterization of
expression, and G-domain modeling.”;

G

FUNCTION This protein promotes the GTP-dependent translocation of the nascent protein chain from
the A-site to the P-site of the ribosome.

SUBCELLULAR LOCATION Cytoplasmic.
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Some obvious issues in scaling single

molecule definition to a genomic scale

« Fundamental complexities
() Often >2 proteins/function

() Multi-functionality:
2 functions/protein

{ Role Conflation:
molecular, cellular, phenotypic
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Some obvious issues in scaling single

 Fundamental complexities
() Often >2 proteins/function

¢ Multi-functionality:
2 functions/protein

() Role Conflation:
molecular, cellular, phenotypic
* Fun terms... but do they scale?....
() Starry night (P Adler, '94)

[Seringhaus et al. GenomeBiology (2008)]
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Hierarchies & DAGs of
controlled-vocab terms
but still have issues...
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[Seringhaus & Gerstein, Am. Sci. '08]
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Towards Developing Standardized
Descriptions of Function

» Subjecting each gene to standardized expt. and
cataloging effect

() KOs of each gene in a variety of std. conditions => phenotypes
( Std. binding expts for each gene (e.g. prot. chip)

 Function as a vector nucleic

acids proteins

protein 1 10| O 0 0 0 0 |...... 0 0 0o ...
protein 2 0 0.9 0 0 0 0 ... 0 0 0o ...
protein3 | 1.0 0 1.0 0 0 0 |..... 0 0 0o ...
protein 4 0 0 0 0 08| 0 |..... 0 0 1.0 ...
protein5 | 1.0| O 0 0 0 0 |...... 0 0.9 0o ...
proten6 | 09, o | | ... L
protein 7 ocjo8y { t + t--d 0 ]

Interaction Vectors [Lan et al, IEEE 90:1848]



Networks (Old & New)

Fringe: Vital in boundary formation " Itch: linkedto RBPMS A CSNK2AT
in developing fly wing. \ itchy skin in mice ) / CSNK2A2
B R — > EPS8
" Numb: mutations impair .; A ' Tps3
_ sensory organs in flies DLK1 ' Dvl AP2A
Dvl ' o - \ - N |
: | : Fringe ; GS,KS\B Numb MDM2
Fringe / Numb
/ e Deltex — GRB2
e B ~__» Deltex
Delta Y 5 Notch /// . Delta CTNNB1 | MAML
: Notch: with defects, flies APP
Y A A r | : : o
P develop notches in wings O ™ SMAD3
/ //' . o - - ) 2 d
Serrate |/ 9 — . oo PCAF ™~ LEF1
PSE2 = PSEN N\
" ) YY1 LY SKIP
/ il el 4 DLLT NCSTN — APH-1
o CSL RELA CSL
TACE TACE G22P1
I ABL1
DLG1 APBA1
Classical KEGG pathway Same Genes in High-throughput Network

[Seringhaus & Gerstein, Am. Sci. '08]

8 Gerstein.info/talks (c) 2008



Networks occupy a midway point in

terms of level of understanding

500000

1D: Complete
Genetic Partslist

[Fleischmann et al., Science, 269 :496]

~2D: Bio-molecular
Network
Wiring Diagram

[Jeong et al. Nature, 41:411]

3D: Detailed
structural
understanding of
cellular machinery
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Networks as a universal language

- Internet
~ [Burch & Cheswick]

Electronic

Circuit
Disease
Spread 7N [Cajal
[Kre bS] Albert-Laszlé -
Protein 2
Interactions 5
[Barabasi] e o e Social Network




Networks as a Central Theme

in Systems Biology

Reductionist Approach

Integrative Approach

[Adapted from H Yu]
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Network pathology & pharmacology

Breast ?
Cancer
- : ~ PROZAC HC/N o
o _\' ssssss .
e g\ O] L oo
NN i Disease N o—o_ ~

u-.'

» Parkinson’s - -
, Disease 4 i
4 X

Multiple

O
Sclerosis \0 $

Interactome networks

[Adapted from H Yu]
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MICHAEL BROWN, FEMA,
FEDERAL AGENCIES.

“It's the responsibility of faith-based

organizations, of churches and charities
and others to help those peoplo.”™ -

u
]
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When failures made the disaster ‘ é,&‘\
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found fault with somebody. And CHURCHES. o

the fingers haven't stopped &*‘ ‘\,6‘9 ’ ' ‘ ‘
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“To the extent that the federal
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Types of Networks

aosc"“""m factors and Sofacyy,
¢ rs

Target genes

Regulatory networks

Interaction networks

Nodes: proteins or genes
Edges: interactions

[Horak, et al, Genes & Development, 16:3017-3033]
[DeRisi, Iyer, and Brown, Science, 278:680-686]
[Jeong et al, Nature, 41:411]
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Metabolic networks
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Combining networks forms an ideal way

of integrating diverse information

Part of the
TCA cycle

—

Metabolic
pathway

............. » Transcriptional

regulatory
network

Physical protein-
protein Interaction

Co-expression
Relationship

Genetic interaction
(synthetic lethal)
Signaling pathways
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Outline

 Predicting Networks
) Training set expansion

* Properties of Protein Networks
¢ Hubs

* Dynamics of Networks

¢ Dynamics across cellular states
¢ Dynamics across environments

* Protein Networks and Human Variation



Predicting Networks

How do we construct large molecular networks?
From extrapolating correlations between functional genomics data with fairly
small sets of known interactions, making best use of the known training data.




e Only small
Network Prediction sortions are

already known

Many other kinds
of data available

— Use them to learn
models for
predicting the
unknown
portions

@ &0 & @0 ® O O O O.—.—.'*’O?OO
0 & @ o0 0 @ C O OOO\‘ \.OO

Ex. of Predicted Membrane Protein Interactome in Xia et al. JMB (2006)

Figure 6: A map of known and a subset of predicted interactions among helical membrane proteins. Nodes represent helical

18 Gerstein.info/talks (c) 2005



Example: yeast PPI
network

Actual size:

() ~6,000 nodes
— Computational cost: ~18M pairs

¢ Estimated ~15,000 edges R

— Sparseness: 0.08% of all pairs /I SR, :::

Known interactions:

( Small-scale experiments: accurate but few
— Qverfitting: ~5,000 in BioGRID, involving
~2,300 proteins

( Large-scale experiments: abundant but
noisy
— Noise: false +ve/-ve for yeast
two-hybrid data up to

45% and 90% (Huang et al., 2007)

19 Gerstein.info/talks (c) 2009



Learning

Concepts in machine learning:

* Training sets:

( Positive set: known interactions

¢ Negative set: known non-interactions
* Features:

() Data describing the objects
* Model:

{ A function that takes two objects as input and predicts
whether they interact



Training sets

Known interactions

Known non-interactions

"""" Unknown



Features

« Example 1: gene expression

x,=(0.2,24,1.5,
x,=(0.8,2.2, 1.5,
) x3=(43,0.1,75,

sim(X;, X,) = 0.62
sim(X;, X3) =-0.58

Gasch et al., 2000

N N N

@\

=

N9

&

Similarity scale:

d

- &



Features

« Example 2: sub-cellular localization

sim(X;, X,) = 0.81
sim(X,, X;3) =0.12

http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif

=

O

Similarity scale:

1
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Data integration & Similarity Matrix

@ (0, @ /? 4 0.89
Z; ) ') 2

24 Gerstein.info/talks (c)2009



Evaluation

« Computational:

() Cross-validation

{ Indirect evidence (e.g. same GO category)
« Experimental:

( Validation of de novo predictions



Learning methods

An endless list:

» Docking (e.g. Schoichet and Kuntz 1991)
« Evolutionary (e.g. Ramani and Marcotte, 2003)
« Topological (e.g. Yu et al., 2006)
« Bayesian (e.g. Jansen et al., 2003)
« Kernel methods
() Global modeling:
« em (Tsuda et al., 2003)
« kCCA (Yamanishi et al., 2004)
« kML (Vert and Yamanishi, 2005)

« Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
() Local modeling:

« Local modeling (Bleakley et al., 2007)

Let's compare fairly in a public challenge! (DREAM)



Kernels

Kernel: a similarity matrix that is positive semi-definite (p.s.d.)

1 2 3 4
10 Compute
o Ul xs inner products 1 100 072 045 -056
el ] 2| 072 1.00 -0.30 -0.98
! A T e, implies 3] 045 -0.30 1.00 049
o 41-0.56 -098 049 1.00
Objects in an feature space Similarity matrix

Good for integrating heterogeneous datasets (protein
sequences, PSSM, gene expression, ...)

— no need to explicitly place them in a common feature space



Kernel methods

Use the kernel as proxy to work in the feature space

Example: SVM (finding the best separating hyperplane)

90 ol X3 Maximize Eki_%zzﬁ’ikjyiyj<xi9xj>
i T

- 1 g Equivalent to SUbjECt to A=0

L o N4y, =0

A

The only thing that we
need to know about the
objects: their similarity
values (inner products)




Kernel methods for predicting
networks: local vs. global modeling

Model for node 3:

Problem: insufficient and unevenly distributed training
data (what if node 3 has no known interactions at all?)



Kernel methods for predicting
networks: local vs. global modeling

0.55 0.66 1.00 0.79 3 0.55 0.66 1.00

may not be able to handle

Q
Pairwise kernel: consider object pairs Q 08
instead of individual objects g G 8
Problem: O(n?) instances, O(n*) 8 8 o
kernel elements e
Direct methods: threshold the kernel ooz 3 T
tO make pred|Ct|OnS 1 1.00 057 055 0.40 1 1.00 057 0.55
Problem: One single global model, ~ * |~ 1~ 1 f Threshold:07 S I

0.40 0.89 0.79 1.00 4 0.40 0.89 0.79

subclasses




Our work: training set expansion

» Goal:

() Utilize the flexibility of local modeling

() Tackle the problem of insufficient training data
 |dea: generate auxiliary training data

() Prediction propagation

( Kernel initialization

[Yip and Gerstein, Bioinformatics (09, in press)]



Prediction propagation

* Motivation: some objects
have more examples than
others

e Qur approach:

( Learn models for objects with () @
more examples first )
¢ Propagate the most confident @ A : ﬁ\ 2
© 7 @

predictions as auxiliary

examples of other objects

[Yip and Gerstein, Bioinformatics (09, in press)]



Kernel initialization

 Motivation: what if most

objects have very few

examples?

« Our approach (inspired by
the direct method):
() Add the most similar pairs in
the kernel as positive examples

() Add the most dissimilar pairs in
the kernel as negative
examples

[Yip and Gerstein, Bioinformatics (09, in press)]



Remarks

 Can be used in combination

 Prediction propagation theoretically related to co
-training (Blum and Mitchell, 1998)

() Semi-supervised
« Similarity with PSI-BLAST

* Algorithm complexity O(nf(n)) of local modeling vs.
O(f(n?)) of global modeling

[Yip and Gerstein, Bioinformatics (09, in press)]



Experiments

* Gold-standard interactions: BioGRID, from studies
that report less than 10 interactions

 Features:

Code Data type Source Kernel

phy Phylogenetic profiles COG v7 (Tatusov et al., 1997) RBF (0=3,8)

loc Sub-cellular localization (Huh et al., 2003) Linear

exp-gasch Gene expression (environmental response) (Gasch et al., 2000) RBF (0=3,8)
exp-spellman Gene expression (cell-cycle) (Spellman et al., 1998) RBF (0=3,8)
y2h-ito Yeast two-hybrid (Ito et al., 2000) Diffusion (f=0.01)
y2h-uetz Yeast two-hybrid (Uetz et al., 2000) Diffusion (f=0.01)
tap-gavin Tandem affinity purification (Gavin et al., 2006) Diffusion (=0.01)
tap-krogan Tandem affinity purification (Krogan et al., 2006) Diffusion (=0.01)
int Integration Summation

[Yip and Gerstein, Bioinformatics (09, in press)]



Prediction accuracy

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int

Mode 1

direct 58.04 66.55 64 .61 57.41 51.62 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 5048 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 7347
em 71.22 75.14 67.53 64.96 55.90 53.13 63.74 68.20 81.65
local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
local+pp 73.89 75.25 77.43 75.35 71.60 71.51 74.62 71.39 83.63
local+ki 71.68 7142 75.89 70.96 69.40 69.05 70.53 72.03 81.74
local+pp+ki 72.40 7519 77.41 73.81 70.44 7057 73.59 72.64 83.59

Observations:
» Highest accuracy by training set expansion

 Overfitting of local modeling without training set

expansion

« Comparing prediction propagation and kernel
Initialization

[Yip and Gerstein, Bioinformatics (09, in press)]
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Complementarity of the two methods

O |ocal
X local+pp
° |ocal+ki

® local+pp+ki

85
p o &
80 X a6
>
75 t o .
g 70 | b3 O
0O
S 65 |
< %
60 |
Q O
95
at
50 1 1 1 1 1
0 1000 2000 3000 4000 5000
Sample size (number of gold standard positive interactions)

[Yip and Gerstein, Bioinformatics (09, in press)]
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Network Dynamics #1:
Cellular States

How do networks change across different cellular states?
How can this be used to assign function to a protein?

38 Gerstein.info/talks (c) 2008



Global topological measures

Indicate the gross topological structure of the network

O
O

\4

Degree (K) Path length (L) Clustering coefficient (C)
5 2 1/6

Interaction and expression networks are undirected

[Barabasi]
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© TFs
O Targets

Global

topological \L/

measures for

: v v
directed 471§
networks
In-degree Out-degree
3 5

Regulatory and metabolic networks are directed
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Scale-free networks

Power-law distribution

log Pek) A N .
/ P(k)~k” \ / ’

o - pon,
5 / =N

S € 7054
5 Pt S )
o) 7

log(Degree) o2k

Hubs dictate the structure of the network

[Barabasi]



[Yu et al., 2003, TIG]

Hubs tend to be Essential

Integrate gene essentiality data with protein
interaction network. Perhaps hubs represent
vulnerable points?

[Lauffenburger, Barabasi]
25 -

"hubbiness”
Average degree (K)
I \./
I

(&)
]

2

Non- Essential

Essential



[Yu et al., 2003, TIG]

Relationships extends to "Marginal Essentiality”
Marginal essentiality measures relative importance of

each gene (e.g. in growth-rate and condition-specific

essentiality experiments) and scales continuously with g

"hubbiness"

25 -
O -

= 20 4
0 < I
n 3
O 9451
c P : T
Q Q J[
_Q 310-
> o 1
I,

0

[ B 2222 e

Not important important Very important Essential



Dynamic Yeast TF network

Transcription Factors

Target Genes

Analyzed network as a static
entity

But network is dynamic

() Different sections of the network
are active under different cellular
conditions

Integrate gene expression data

Luscombe et al. Nature 431: 308
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Gene expression data for five cellular
conditions in yeast

Cellular condition

Cell cycle

Multi-stage |<

Sporulation

Diauxic shift

Binary < | DNA damage

Stress response

[Brown, Botstein, Dauvis....]

45 Gerstein.info/talks (c) 2008



Backtracking to find active sub-network

/™
v
O e Define differentially expressed genes
AR
> —’jr / o Identify TFs that regulate these genes
X e Identify further TFs that regulate these TFs,
— - <
7
Active regulatory sub-network é
y =
3



Network

usage under different conditions

static

Luscombe et al. Nature 431: 308
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Network usage under different conditions

cell cycle
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Network usage under different conditions

sporulation

800z (9) s)j|e}/OJUI'UIB}SIAD) 617




Network

usage under different conditions

diauxic shift
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Network usage under different con
DNA damage

ditions
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Network usage under different conditions

stress response

800z (9) s)j|e}/OJUl'UIB}SIAL) ZG




Network usage under different conditions

Cell cycle

Sporulation Diauxic shift DNA damage Stress

SANDY:

1. Standard graph-theoretic statistics:
- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage
- Interaction rewiring

3. Statistical validation of results

Luscombe et al. Nature 431: 308

53 Gerstein.info/talks (c) 2008



Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:

1. Standard graph-theoretic statistics:
- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage
- Interaction rewiring

3. Statistical validation of results

54 Gerstein.info/talks (c) 2008



114

150 Analysis of
| condition-
specific
P ae 16 s subnetworks
ndegree — in terms of
e 2 global

Pathlength topological
015 0.4 statistics

Outdegree

2.0 1.9

Clustering
coefficient
5
© = o
S © © 8 e
1) 2 X © » O
s & : 8% 2§ g
"— wied
o 7 Qv 0o n 2
< - >
Multi-stage - Binary
Controlled, ticking Quick, large-scale
over of genes . turnover of genes Luscombe et al. Nature 431: 308

at different stages



O O

|
/\
~00

57% 56% 59%

Analysis of
condition-
specific
2a% 2T subnetworks

Single-
input
module

Multi-input _
module in terms of
occurrence
: of local
) 45% =
Feed- il : -
AN D e 2% motifs
loop :
c
o = @
O ()
5 S % 2 @af
= S s e ¢o2
o 7 A% 0T 69
< ; >
Multi-stage Binary
Controlled, ticking : Quick, large-scale
over of genes turnover of genes

Luscombe et al. Nature 431: 308

at different stages
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Cell cycle Sporulation Diauxic shift DNA damage Stress

multi-stage conditions

()
\ v,vo
=)
v i )
L4
)
Summary
less pronounced Hubs more pronounced
longer Path Lengths shorter
more TF inter-regulation less
complex loops (FFLs) Motifs simpler (SIMs)
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Transient Hubs

100

10 -

Number TFs

0.1 T T .
1 10 100 1000

Number outgoing connections

e Questions:

N v

\

Regulatory hubs

{ Do hubs stay the same or do they change over between conditions?

¢ Do different TFs become important?

e Our Expectations
() Literature:

Luscombe et al. Nature 431: 308

e Hubs are permanent features of the network regardless of condition
¢ Random networks (sampled from complete regulatory network)

e Random networks converge on same TFs

e 76-97% overlap in TFs classified as hubs (/e hubs are permanent)
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cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

cell cycle
sporulation
diauxic shift
DNA damage
stress response

s TR

YMRO16C
YLR183C
YIL131C
SWI4
YDR451C
SWI6
STE12
MBP1
MCM1
YDR146C
YLR131C

UME6
IME1l
YNL216W
SIN3
YIR023W
YPLO38W
YNL103W
YMR021C
CBF1
YBL021C
YIL122W

HAP4
HAP2

YHR206W
YAPL
HSF1
YPLO89C
YCRO65W
CINS5
YDR310C

YDR259C
MSN2
YDR501W
MSN4
YGLOS6W
PDR1
YLR403W
YGLO71W
YIR018W

YKL043W
YLRO13W
YGL209W
YMLO27W
YFR034C
YELOOOSC
YBR04SC
YGLO035C
YKL112W
YDR043C
YPRO65W

A

<

transient hubs

permanent hubs

Some permanent hubs
() house-keeping functions

Most are transient hubs

¢ Different TFs become key
regulators in the network

Implications for condition-
dependent vulnerability of
network

Luscombe et al. Nature 431: 308
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cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

DNA damage
stress response

cell cycle
sporulation
diauxic shift

R

o

YMRO16C
YLR183C
YIL131C
SWI4
YDR451C
SWI6
STE12
MBP1
MCM1
YDR146C
YLR131C

UME6
IME1l
YNL216W
SIN3
YIR023W
YPLO38W
YNL103W
YMR021C
CBF1
YBL021C
YIL122W

HAP4
HAP2

YHR206W
YAPL
HSF1
YPLO89C
YCRO65W
CINS5
YDR310C

YDR259C
MSN2
YDR501W
MSN4
YGLOS6W
PDR1
YLR403W
YGLO71W
YIR018W

YKL043W
YLRO13W
YGL209W
YMLO27W
YFR034C
YELOOOSC
YBR049C
YGLO035C
YKL112W
YDR043C
YPRO65W

= Swi4, Mbp1

=Imel, Umeb

—— Msn2, Msn4

Luscombe et al. Nature 431: 308
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cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

[0}
17}
55
c%m%
2% EQ
T o

O ©® o S
235 % n
O,_><<u;
= O g zZ [
o o .2 =
O nwoTOTwW®

s TR

YMRO16C
YLR183C
YIL131C
SWI4
YDR451C
SWI6
STE12
MBP1
MCM1
YDR146C
YLR131C

UME6
IME1l
YNL216W
SIN3
YIR023W
YPLO38W
YNL103W
YMR021C
CBF1
YBL021C
YIL122W

HAP4
HAP2

YHR206W
YAPL
HSF1
YPLO89C
YCRO65W
CINS5
YDR310C

YDR259C
MSN2
YDR501W
MSN4
YGLOS6W
PDR1
YLR403W
YGLO71W
YIR018W

YKL043W
YLRO13W
YGL209W
YMLO27W
YFR034C
YELOOOSC
YBR049C
YGLO035C
YKL112W
YDR043C
YPRO65W

Unknown functions

Luscombe et al. Nature 431: 308
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Network Dynamics #2:
Environments

How do molecular networks change across environments?
What pathways are used more ?
Used as a biosensor ?




What is metagenomics?

Genomics Approach

Culture Microbes Extract DNA Sequence Assemble and Annotate

ATCGTATA . 04 J7
— AP - e e
ACGTCTGA RN N

AGTGCTGCT o Oy

Metagenomics Approach

Collect Sample Extract DNA Sequence Partially Assemble and Annotate

ATCGTGATAGATGATAGTAGA
ATGCTGCATGCATCTAGCACT S R—
ACAGTAGCTAGCTACGTACTA
CAGCTGACTAGCTAGCTAGCT —-
ACGTAGCATGCTAGCTAGCAG —
— ——)  ACGTACGTAGCTAGCTAGCTAG  —— )
; % ACGTACGTACGTAGCTAGCATC e

AGTCGACTGAGCCAGTGATGAT _>

ACGATGCATGAGCAGATGCTAC
AGATCGTAGCATGCTAGCATGCT

ﬁ-
ACGTACGTAGCTAGCTAGCTAAG

AGCTAGCATGCTAGTAGCATGAG - —
ACGATGCTAGCTAGCTAGCTGATA

TCGATCAGCATGCTACGATGCAAG —
ACGATCGATGCTAGCTAGCTAGCAT

AGCTAGCTAGTCAGCTAGCTAGATG




Comparative Metagenomics

Soil

Do the proportions of pathways
represented in these two samples

differ?

Canonical discriminant function 2 (31.9%)

'<>I:’rt:>teir‘||‘(>

Celll

D o

4| Virulence

wall

Membrane transport

Sulphur

<
® Signalling
i | s
Motilit ' ' g
oV, \¢ Ym <o
vh
Respiration =
o “ @ Subterranean
o © Hypersaline
J ¥ Marine
Canonical discriminant function 1 (48.0%) ¥ Freshwater
@ Coral
O Microbialites
& Fish
< Terrestrial animals
@ Mosquito

Dinsdale et. al., Nature 2008



Trait-based Biogeography

Charles River,
MA

Long Island
Sound, CT

Do the proportions of pathways
represented in these two samples
CHANGE as a function of their
environments?

Srapaggy | a4 AR
FARARINET - B A

Varaniss ks Ina T8 5
P ivsARIRIEETRNES,

Green et. al., Science 2008



Global Ocean Survey Statistics (GOS

USA

. Canada
Sl 7 Northern Gulf of Maine 7
8Newport Harbor,RI 6 Bay of Fundy, Nova Scotia (Estuary) %
Sl 1 5 Bedford Basin, Nova Scotia (Embayment).  2® ®3
:? g:f:w“:::';;’ N By 4 QU HalifxNova Scotia ) .58
24 ry) il
ety i) BB G"""ma'";..o ]
13 Off Nags Head, 5C
: 13
North America Sargasso Staions,
14 South of Charleston, SC -01
14
USA 00
15 Off Key West,FL
16 Gulf of Mexico Atlantic
160®15 Ocean
R e S 6.25 GB of data

el18

18 Rosario Bank, Honduras
7.7M Reads

25 Dirty Rock,Cocos sland

J) Panama,
(Fringing Reef) 19 gy
30 2330 mi from Cacoslsland® \aNafhsamgiColon 1 | I P h
36 m ke h
22 920 Rskecaun Frster million CPU hours
% 034 o 21
P 7| o rocltmtnns 0 process
27'28 mi from Panama City t p
26
Lana (hypersaline) 33 ® 134 mi NE of Galapogos, Ecuador
037 South

Equatorial Pacific TAO, International America

SCIENCE IN THE
PETABYTEERA

Rusch, et al., PLOS Biology 2007



Pathway Sequences

(Community Function) \

Environmental

Features

boli
Patheys

B1 3800 | 1400 | 1000

Environmental
Metadata Temp NaCl Depth

Sites o [2200 [ 100 | 400 Sites

\

v

15°C

27.2] 10m

23°C

366 S5m

READS ——> PROTEIN FAMILIES —— PATHWAYS

CCGTGAGCACGATGCGC-

?TL:CTCHTCCT- S—
(.(.(JT(.;HCCA(.(JAT(JC(JQTQCTCAKCT- — P1 = f1 + fz + f3

ﬁ=g+g+g

ATCGTGACGCGATGC

c\TbCTC»«TCCT —
GCGATCGATCGATCGTAG

TGCTCCTAGCATGCT
GCGATCGATCGATCGTAGC

TCCTGCTAGO\TGCT -
CCGTGAGCACGATGCGC--- .
uTAT“T»« G ;AT\_ CTT
CCGTGAGCACGATGCGC -mmmemmeemee
GCGATCGATCGATCGTAGC

PATHWAYS

P ,=2+1+3 P, =2+4+3
P,=5+2+6 P, =5+7+6

SITES

Expressing

data as
matrices

indexed by

site, env. var.,

and pathway
usage

[Rusch et. al., (2007) PLOS Biology;
Gianoulis et al., PNAS (in press, 2009]



Simple Relationships: Pairwise Correlations

Metabolic
Pathways

B1
B2

\

Sites

[ Gianoulis et al., PNAS (in press, 2009) ]

Environmental

3800 | 140 1000
2200 | 1004} 400
Environmental Features
Chlorophyll Temp
10
P — .
0.5 a
t ___;‘
- 00 W —
al - Cobalamin Biosynthesis
y — Photosystem I
-0. T |
S Photosystem |
— Carbon Fixation (Dark rx)
= ————— Glutamine Degradation
-10 e a——

Predicted Temperature

etadata Te NaCl §Depth
- B1 15°CH 27.2 JJ10m
ites 0
B2 23°Cf 366 ] 5m
\J
L ]
- 4 ° .
L ]
o~ . ° L)
« * : o ® b
(=% o e o L ]
o P ) *% .
I 4 ) [ ] °
Y [ ]
T . . =68
L
_2 -1 0 1 2

Actual Temperature




Canonical Correlation Analysis:
Simultaneous weighting

Score

# of papers published

Undergraduate

Performance Index (UPI) | Performance Index (GPI)

Graduate School

[ Gianoulis et al., PNAS (in press, 2009) ]



Canonical Correlation Analysis:
Simultaneous weighting

Score # of papers published Undergraduate Graduate School
Performance Index (UPI) | Performance Index (GPI)
GRE
GRE GPA
_— ——,
L Environmental Metabolic
Features Pathways
Temp  ©fc Photosynthesis  etc
( Chlorophyll Lipid Metabolism
|2l

[ Gianoulis et al., PNAS (in press, 2009) ]



Environmental-Metabolic Space

CCA Footprint
2. ——
Te;np l = 0 | ACIA P3. \\
el =° P1°® Depth, \
B |8 2 i --
max ss - < Ba N -3847" A2 0\ ‘1
corr 82. ~1l g l " P4« \-/ 1‘
= b /
NaCl Depth S g ; P5e
' E ' Tempy,
Linear combination of Linear combination of 59 lssnsnnivrsedsevinnanes

environmental| features.

pathways

1

0 05 0

0 05

10

Normalized Weights (Dim 1)

The goal of this technique is to interpret cross-variance matrices
We do this by defining a change of basis.

Given X = {xl,xz,....,xn} and Y={y1,,y2,...,ym}

EX EX,Y
2y 2rx

ay,,b

max Corr(U,V)=—= ,
\/a 211“\/[9 2mb

a,b

C

[ Gianoulis et al., PNAS (in press, 2009) ]



Strength of Pathway co-variation
with environment

CCA structural correlation

Environmentally Environmentally
invariant variant

CCA structural correlation

[ Gianoulis et al., PNAS (in press, 2009) ]




Conclusion #1: energy conversion strategy,
- temp and depth

KEGG Module

°
. ."

ATPase
Photosynthesis Icom plex

. . st o o a o
Oxidative . o | - o | 0. | ® | ® || ® ®
Phosphorylation Y Y Y (

o o e} ]
ATPase

complex

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #2: Outer Membrane
components vary the environment

(Glycerd—)lipf;

metabolism

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #3: Covariation of AA
biosynthesis and Import

Why is their fluctuation

in amino acid metabolism?

Is there a feature(s) that

underlies those that are
environmentally-variant

as opposed to those which are not?

His degradation  rp degradation

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #4: Cofactor (Metal)
Optimization

IS DEPENDENT-ON

Methionine synthesis
Cobalamin biosynthesis

Methionine salvage, synthesis,
and uptake, transport

Cobalt transporters

O

HOJJ\/\/S\CH

Cooo73

NH,

3

Methionine
RELIES ON

Methionine Salvage
Spermidine/Putrescine transporters

Arg/His/Ornithine transporters

IS NEEDED FOR

Methionine degradation
S-adenosyl Methionine Biosynthesis
(synthesize SAM one of the most

important methyl donors)

Polyamine biosynthesis

[ Gianoulis et al., PNAS (in press, 2009) ]



Biosensors: Beyond Canaries in a Coal
Mine

[ Gianoulis et al., PNAS (in press, 2009) ]



Networks & Variation

Which parts of the network vary most in sequence?
Which are under selection, either positive or negative?
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METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND
THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE
e N
Hapmap/Perlegen Database of Genomic Variants
International i
HapMap
Proj ct
Map to ENSEMBL genes
SNPs CNVs + SDs
Ensembl Genes
ENSGO00XXXX:
V00 Result
DN/DS XXXX
Recombination rate
Int ¢ * Dataset of network
n erac% ome Mab t teins in th position / parameters
viap 1o proteins mk © (e.g. degree centrality
interaction networ or betweenness
> centrality) in
relationship to SNPs,
CNV’s, recombination
from HPRD and selection tests
Y2H screens
\_ .

*From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)

Source: PMK



ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

Single-
basepair

Structural
variation

Source: PMK

Intra-species variation

Positive
Selection

)
S
O >
e

@ O

Single-Nucleotide Polymorphisms

I— Positive
- ee— Selection
o 0 j—————— —_—
o 000 ——————

] ]

Copy Number Variants

Fixed mutations
(differences to other species)

Fixed Differences

Segmental Duplications



POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK
PERIPHERY

Positive selection in the human interactome

-
® High likelihood of
positive selection
Lower likelihood of
© positive selection
[ J
o Not under positive
selection
®
0O No data about
positive selection
o
®
[ J
-

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)



CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE

SELECTION

Degree vs. Positive Selection

5,

]

45P¢ Spearman Rank P-value: 1.2e-06

41e

w

D

3

=
o

—_

Positive Selection Test Likelihood Ratio
N
U‘l

o
($)]

1 & & & & 1

o

05 1 15 2
Betweenness Centrality

o

2.5

x 10°

Network periphery

Network center

[ 1 Hubs

Reasoning

Vs

.

* Peripheral genes are likely to under
positive selection, whereas hubs
aren'’t

* This is likely due to the following
reasons:

— Hubs have stronger structural

constraints, the network periphery
doesn'’t

— Most recently evolved functions
(e.g. “environmental interaction
genes” such as sensory
perception genes etc.) would
probably lie in the network
periphery

* Effect is independent of any bias
due to gene expression differences

*With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection
(McDonald Kreitmann and LDD) corroborate this result.
Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)




CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

Centrality vs. SD occurrence Reasoning

Vs

* This result also confirms our initial
hypothesis — peripheral nodes tend
8- - to lie in regions rich in SDs.

~

-Spearman Rank P-value: 3.5e-04 .

* Since segmental duplications are a
different mechanism of ongoing
evolution, the less constrained
peripheral proteins are enriched in
them.

(o2}

AN
19J

Number of Overlapping SDs
w (6]

* Note that despite the small size of
2me 9 our dataset for known SD’s we get
significant correlations. It is to be

‘| DR OO @ & 0060000 ‘o . .
0 05 1 15 2 25 3 35 4 expected that the correlations will
Betweenness Centrality x 10° get clearer as more data emerges*
Network periphery Network center

.

*Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome
Source: Database of genetic variation, HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)



Why do we observer this? Perhaps central hub proteins are involved
in more interactions & have more surface buried.

0.49
BURIED SITES ARE 0.35
CONSERVED AND dN/dS :
MUCH LESS LIKELY Ratio
TO HARBOR NON-
SYNONYMOUS 001
MUTATIONS Exposed Buried
sites sites
2.66
Average 226
Relative
Surface
Exposure
p<<0.01
Site with Sites with
Synonymous  Non-synonymous
Mutations only Mutations

Source: Kim et al. PNAS (2007)



Another explanation: THE NETWORK PERIPHERY CORRESPONDS TO THE
CELLULAR PERIPHERY

Ve N
Betweenness Degree
Centrality Centrality
(x 10%)
Chromosome 55 10
Nucleus 5.0 8.6
Cytoplasm 5.2 8.1
© Extracellular
@ Plasma membrane @ Ribosome Membrane 4.0 6.5
O Cytoplasm © Lysosome
O Mitochondria @ Peroxisome
@ Nucleus @ Golgi apparatus
@ centrosome @ Endoplasmic reticulum EXtr.a cellular 3.8 5.9
O Endosome @ Other organelles/unknown egion
\_ J

Source: Gandhi et al. (Nature Genetics 2006), Kim et al. PNAS (2007)



IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR
THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE

NETWORK PERIPHERY? LUSTRATIVE
4 )
Relaxed Constraint Adaptive Evolution
Inter-Species * Increases inter-species * Increases inter-species
Variation (Fixed variation — more variable variation — more variable
differences) loci are under less negative loci are under less negative
selection selection
* Can be seen in higher Ka/ * Can be seen in higher Ka/
Ks ratio or SD occurrence Ks ratio or SD occurrence
Intra-Species * Increases intra-species * Should not have effects on
Variation variation — for the very same intra-species variation
(Polymorphisms) reason
* Can be seen in both SNPs
or CNVs
. J

Source: Kim et al. PNAS (2007)



SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE
PERIPHERY IS DUE TO RELAXED CONSTRAINT

Inter vs. Intra-Species Variation in Networks Reasoning
(
4.37 * There is a difference in variability
(in terms of SNPs) between the
Inter-Species network periphery and the center
(Fixed 2.71
differences)
petwesaness * However, this difference is much
J . .
ix 10%) smaller than the difference in
selection
p<<0.Ct
Genes with Genas with
dN/ds>1 dN/gsS«<=1

* This most likely means, that part of
the effect we're seeing is due to

4.35 . .
ntra-Sooci 408 relaxed constraint (and higher
ntra-Species variabilit
(SNPs) y)

[ Variability ]
Betweenness
Centrality * But, not the entire effect*
(x 10%)
p<0.05
Genes with Genes with
pPN/pS>1 pPN/pS<=1

*But it’s hard to quantify
Source: Kim et al. (2007) PNAS



Similar Results for Large-scale Genomic Changes (CNVs and SDs)

Inter vs. Intra-Species Variation in Networks

4.18
Inter-
Species
2.61

(SDs)

Betweenness

Centrality

(x 104

p<<0.01
Genes intersecting All others
SDs
4.20

Intra-Species 325
(CNVs) '
[ Variability ]

Betweenness

Centrality

(x 10%)

p<<0.01
Genes intersecting All others

CNVs

Reasoning

Ve

Source: Kim et al. (2007) PNAS

* There a small difference in
variability (in terms of CNVs)
between the network periphery and
the center

* But, there is a (as shown before)
marked difference in fixed (and
hence, presumably, selected) SDs
at the network periphery and center




Conclusions:
Net Intro. + Predicting Networks

» Developing Standardized
Descriptions of Protein
Function
( Gene Naming

* Predicting Networks

() Extrapolating from the Training
Set

{ Principled ways of using the
training set data in the fullest
possible fashion

* Prediction Propagation
« Kernel Initialization




Conclusions: Network Dynamics
across Cellular States

* Merge expression data with
Networks

 Active network markedly
different in different
conditions

* |dentify transient hubs
associated with particular
conditions

» Use these to annotate genes
of unknown function




Conclusions: Networks Dynamics
across Environments

« Developed and adapted techniques to
connect quantitative features of
environment to metabolism.

« Applied to available aquatic datasets, we
identified footprints that were predictive
of their environment (potentially could be

< used as biosensor).

« Strong correlation exists between a
community’s energy conversion
strategies and its environmental
parameters (e.g. temperature and
chlorophyll).

« Suggest that limiting amounts of cofactor
can (partially) explain increased import
of amino acids in nutrient-limited
conditions.




Conclusions: Connecting
Networks & Human Variation

« We find ongoing evolution (positive
selection) at the network periphery.
¢ This trend is present on two levels:

* On a sequence level, it can be seen
as positive selection of peripheral
nodes

» On a structural level, it can be seen
as the pattern of SDs that display
significantly higher allele frequencies
in non-central genes

( 2 possible mechanisms for this : adaptive
evolution at cellular periphery &
relaxation of structural constraints at the
network periphery

* We show that the latter can only
explain part of the increased
variability,,,
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tYNA

- an automated web tool (vers. 2 :
"TopNet-like
Yale Network Analyzer")

/3 tYNA - Control Panel osoft Internet Explorer > =8| x| <
Ble Edt View Favortes Tools Help \ o
e N . =l =
O Back - () - \ﬂ @ o) | ) search ¢ Favorites &%) ‘ N <R E P
aderess [&] lab Order=idécategoryOrder=id DVANCED_VIEWEIistTyp sethetw x| £ Go | ks | & - -
= [camnz)
= =
tYNA =
<>
Getting started AP| WSDL Download tYNA | 1| guide Plugins for Cytoscape Contact Known problems
You are logged in as kevin. Logout View: Simple Advanced
List | Owned ~| |Biological ¥| networks with I(Attrihute name)j =|(A|trihute value)j List =
- =
Workspace manager Networks in database ( upload download 1
el . | = =
Load an existing network © Creation P 3
1D Mame Creator date <
Load 14. Uetz 2000 yeast two ... ¥ 14 Uetz 2000 yeast two hybrid kevin  21-Feb0B  Delete @
15 Ito 2001 yeast two hybrid kevin  21-Feb-06  Delete
Into workspace 0 ¥ >
16 Ho 2002 pull down kevin  21-Feb-06  Delete
Categorized by Nil > . I i
17 Gavin 2002 pull down kevin  21-Feb-06  Delete Display options:
b Default cols
Load 18 Jansen 2003 PIT keWin 21-Feb0B  Delote ot o0
. Node: [ blue | Edge: | | Text: | =l
v ) ) 19 MIPS yeast PPI kevin  21-Feb-06  Delete Special coloring: @
Current working networks in your workspaces: 21 BIND yeast data Kkevin  21-Feb06  Delete © None
0 i . geq, 1, value, neighbors=false,
" inl:el;sectian( . ) 22 DIP yeast data kevin  21-Feb-08  Delete @ Color gradient: [Degree ] of [Original network ] from [ureen =l tored =l
"Uetz 2000 yeast two hybrid”, 23 Kim 2006 structural interaction  kevin ~ 21-Feb-08  Delete c T =
"to 2001 yeast two hybrid") ! Color class:  Class name: [j
24 Han 2004 FY| data kevin  21-Feb-06  Delete Redraw
Waorkspace 1 (empty)
25 Luscombe 2004 regulatory kevin  21-Feb-06  Delete | _—
Workspace2 Gty Sowice:
Workspace 3: (empty) Connected L) Clustering Coefficients o 7Y
tegories in database ( uplo. category Node [Edge | (T IRNCN Degrees (>} o
¢ Counts |Count e =
i e D Name Creator Creation date A4 Avg. |S.D. |Min. |Max. Avg. |S.D. |Min. |Max. Avg. |S.D. |Min. |Max. |Avg. |S.D. Min. Max.
e-network analysis ‘ o
| | = ‘"A;:‘v?ll:’k ‘ 275‘ 187‘ 109 1.30 074 1 7/0.04 019 0.00 | 1.00 ‘251 ‘157‘ 1 9380 ‘2022 ‘U.UD 200.00
@ [T T nternet

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);
Similar tools include Cytoscape.org, ldekar, Sander et al]
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DPM: Discriminative Partition Matching
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[ Gianoulis et al., PNAS (in press, 2009) ]
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- Interactome

GENOME

protein-DNA interactions

PROTEOME

protein-protein

interactions

METABOLISM

Protein-small molecule
interactions
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More Information on this Talk

TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION:

Cornell Medical School, Physiology, Biophysics and Systems Biology

(PBSB) graduate program, 2009.01.26, 16:00-17:00; [I:CORNELL-PBSB]

(Long networks talk, incl. the following topics:

why networks w. amsci*, funnygene*, net. prediction intro, memint¥*,
tse*, essen*, sandy*, metagenomics*, netpossel*, tyna*+ topnet*, &

pubnet* . Fits easily into 60’ w. 10’ questions. PPT works on mac &
PC and has many photos w. EXIF tag kwcornellpbsb .)

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily
cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the
site. For instance,

the topic pubnet* can be looked up at
http://papers.gersteinlab.org/papers/pubnet )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see

http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily
queried from flickr, vizz http: //www. flickr.com/photos/mbgmbg/tags/kwpotppt
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