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Overview
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— SV, event type, and formation mechanism

 The BreakSeq Analysis
— Analysis of SVs using a breakpoint library

* The BreakSeq Pipeline
— The SV Annotation and Identification Pipeline
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Some Issues

 Limited resolution of recent SV surveys
(e.g., microarray based)

— Prevented from intersecting with exons of
genes or analyzing gene fusion events.

— Prevented systematic deduction of the SV
formation process.

— Prevented from inferring the ancestral states
of the SV events.

— Prevented estimation of the physical
properties of the SVs.



THE BREAKSEQ ANALYSIS

Lam HY, Mu XJ, Stlitz AM, Tanzer A, Cayting PD, Snyder M, Kim PM, Korbel JO, Gerstein MB. “Nucleotide-resolution
analysis of structural variants using BreakSeq and a breakpoint library”. Nature Biotechnology 2010 Jan;28(1):47-55.



SV Breakpoint Library

Figure 1 Composition of the SV breakpoint library. SVs in the library were
based on different SV-mapping and breakpoint-sequencing strategies.

A large fraction (44%) of the breakpoints were based on data generated
using 454/Roche sequencing, including resequencing of an individual
human genome (Wheeler21, 602 SVs) and sequencing of breakpoints in two
individuals after high-resolution and massive paired-end mapping

(Korbel® and Kim16, 264 SVs). The remaining 56% of the breakpoints were
identified using other approaches, including Sanger capillary sequencing of
breakpoints identified by whole-genome shotgun sequencing and assembly
of an individual human genome (Levy*4, 694 SVs), fosmid-paired-end
sequencing carried out in multiple individuals (Tuzun3 and Kidd®,

281 SVs), breakpoints mined from SNP discovery DNA resequencing traces

Kim
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(Mills45, 98 SVs), and tiling-array-based comparative genomic hybridization followed by breakpoint sequencing (Perry25, 22 SVs). Fewer than five breakpoints
were reported in two genomes sequenced using short 36-bp reads (lllumina/Solexa)22:23, presumably owing to the complex DNA sequence patterns frequently

associated with breakpoints®:6:25,

[Lam et al. Nat. Biotech. (*10)]



SV Junction and Identification

a Generation of junction sequences
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classified as non-unique match

Figure 2 Mapping breakpoints using the
library. (a) Overview of the BreakSeq approach.
Breakpoints are used to generate junction
sequences spanning breakpoints (upper)—the
30 bp of sequence flanking each side of the
breakpoint (60 bp total). Then, DNA reads

are aligned to the junction sequences (lower).
Alignment results are interpreted as follows.

In the case of insertions relative to the
reference genome (left), sequences A and B
represent the left and right breakpoint junction
sequences of the nonreference SV allele,
respectively. In the case of deletions (right),
sequence C represents the junction sequence
of the nonreference SV allele. Solid lines

with arrows, successful alignments. Dashed
lines with crosses, no proper alignment.

For the HCH, CEPH (NA12891) and YRI (NA18507) genomes,

we identified 158,219 and 179 SVs, respectively.

57 SVs were shared between the YRI and HCH genomes, 62 between
the YRI and NA12891 genomes, 52 between the HCH and NA12891
genomes, and 42 were common to all three genomes.

[Lam et al. Nat. Biotech. (*10)]



Mechanism Classification
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SV Mechanism Classification
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Figure 4 Inferring mechanisms of SV formation.

(a) Pipeline for classifying SV-formation mechanisms.
TE, transposable element. TSD, target site duplication.

[Lam et al. Nat. Biotech. (*10)]



Sensitivity analysis of the classification pipeline
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x-axis is the parameter space. y-axis is the number of SVs of different formation mechanisms
classified by the pipeline using corresponding value of the varied parameter and default values of
other parameters. Dotted vertical lines indicate the default parameters.



SV Formation Analysis
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Formation mechanisms of SVs identified in the 1000 genomes
project: split reads
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Pseudogene Number Variation

431 fully rectifiables overlapped with 13,453 duplicated and processed pseudogenes identified by PseudoPipe based on Ensembl 48

Chr Source Event Start End Size Mech Pgene Type
chri0 Kidd Deletion 100678090 100692331 14241 Mech "NAHR"; Rectified "1:1:1" PSSD
chri2 Venter Deletion 22467006 22473645 6639 Mech "NAHR"; Rectified "1:1:1" PSSD
chr17 Kidd Deletion 65603123 65859003 255880  Mech "NHR"; Rectified "1:1:1" PSSD
chr20 Kidd Deletion 1503149 1536176 33027 Mech "NAHR"; Rectified "1:1:1" PSSD
chr3 Korbel Deletion 74230280 74237487 7207 Mech "NHR"; Rectified "1:1:1" PSSD
chr5 Watson Deletion 64538468 64548395 9927 Mech "NHR"; Rectified "1:1:1" DUP
chr5 Kidd Insertion 69544715 69817387 272672 Mech "NAHR"; Rectified "2:2:2" DUP/PSSD

chrX Kidd Deletion 47752047 47874915 122868 Mech "NAHR"; Rectified "1:1:1" PSSD



SV Ancestral State Analysis

Rectification of insertion according to ancestral state Rectification of deletion according to ancestral state

" Region in reference genome inferring deletion state "Region in reference genome inferring insertion state’
~

/ 1,000 bp \ 1,000 bp 1,000 bp

Junction A Junction C Junction B Junction A Junction C Junction B

I Syntenic primate region inferring insertion state "1  Syntenic primate region inferring deletion state
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Ancestral state analysis reveals balance of insertions
and deletions, and biases in formation mechanisms
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Tracing the origin of recent human insertions
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Breakpoint Features Analysis

Figure 5 Analysis of breakpoint features. a b
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THE BREAKSEQ PIPELINE



The Pipeline Workflow
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The Pipeline Modules
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BreakSeq enables detecting SVs in Next-Gen
Sequencing data based on breakpoint junctions

Leveraging read data to identify previously known SVs (“Break-Seq”)
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* Read overlaps <10 bp to one side of the breakpoint is discarded and read matches also to the reference genome is classified as non-unique match
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Applying BreakSeq to short-read based personal genomes
boosts numbers of bp-level SVs by ~50-fold

NA18507* Yoruba 105 179
YH* East Asian 81 158
NA12891
[1000 Genomes Project, CEU trio] European 113 219

*According to the operational definition we used in our analysis (>1kb
events) less than 5 SVs were previously reported in these genomes ...

[Lam et al. Nat. Biotech. (*10)]



PCR validations in NA12891 demonstrate high accuracy
of BreakSeq and add 48 validated calls to the CEU trio

M1 1 2 3 4 5 6 7 8 910111213 14 151617 18 19 2021 22 23 24 25 2627 28 29 30 31 32M2M133 34 35 36 37 38 39 40 41 M2

1500bp —
1000bp — ™=

500bp — o

100bp =

48 positive outcomes out of 49 PCRs that were scored in NA12891:
98% PCR validation rate (for low and high-support events)

12 amplicons sequenced in NA12891: all breakpoints confirmed

Adrian Stutz [Lam et al. Nat. Biotech. ("10)]
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More Information on this Talk

SUBJECT: Assembly

DESCRIPTION:
Computational Biology Center, IBM T J Watson Research Center, Yorktown Heights, NY,
2010.02.11, 11:00-12:00; [1 : 1BM] (Takes 25' with many questions questions.)

MORE DESCRIPTION:

Talk works equally well on mac or PC. Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily
cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic can be looked up at

http://papers.gersteinlab.org/papers/ )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant
papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://
streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz:
http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .
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