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The problem: Grappling with  
Function on a Genome Scale? 

• 250 of ~530  
originally characterized on chr. 22  
[Dunham et al. Nature (1999)] 

• >25K Proteins in Entire Human Genome 
 (with alt. splicing) 

.……  ~530 
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Traditional single 
molecule way to integrate 

evidence & describe 
function 

Descriptive Name: 
Elongation Factor 2 

Summary sentence  
describing function: 

This protein promotes the 
GTP-dependent 

translocation of the 
nascent protein chain from 
the A-site to the P-site of 

the ribosome.  

EF2_YEAST 

Lots of references  
to papers 
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Some obvious issues in scaling single 
molecule definition to a genomic scale 

•  Fundamental complexities 
◊  Often >2 proteins/function  

◊  Multi-functionality:  
2 functions/protein  

◊  Role Conflation:  
molecular, cellular, phenotypic 
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Some obvious issues in scaling single 
molecule definition to a genomic scale 

•  Fundamental complexities 
◊  Often >2 proteins/function  

◊  Multi-functionality:  
2 functions/protein  

◊  Role Conflation:  
molecular, cellular, phenotypic 

•  Fun terms… but do they scale?.... 
◊  Starry night (P Adler, ’94) 

[Seringhaus et al. GenomeBiology (2008)] 
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Hierarchies & DAGs of  
controlled-vocab terms 
but still have issues...  

[Seringhaus & Gerstein, Am. Sci. '08] 

GO (Ashburner et al.) MIPS (Mewes et al.) 
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Towards Developing Standardized 
Descriptions of Function 

•  Subjecting each gene to standardized expt. and 
cataloging effect 
◊  KOs of each gene in a variety of std. conditions => phenotypes  
◊  Std. binding expts for each gene (e.g. prot. chip) 

•  Function as a vector  

Interaction Vectors [Lan et al, IEEE 90:1848] 
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Networks (Old & New) 

[Seringhaus & Gerstein, Am. Sci. '08] 

Classical KEGG pathway Same Genes in High-throughput Network 
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Networks as a universal language 

Disease 
Spread 

[Krebs] 

Protein 
Interactions 

[Barabasi] Social Network 

Food Web 

Neural Network 
[Cajal] 

Electronic 
Circuit 

Internet 
[Burch & Cheswick] 
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Using the 
position in 

networks to 
describe 
function 

[NY Times, 2-Oct-05, 9-Dec-08] 

Guilt by association 

Finding the 
causal regulator 
(the "Blame 
Game") 
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Combining networks forms an ideal way 
of integrating diverse information 

Metabolic 
pathway 

Transcriptional 
regulatory 
network 

Physical protein-
protein Interaction 

Co-expression 
Relationship 

Part of the  
TCA cycle 

Genetic interaction 
(synthetic lethal) 
Signaling pathways 
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Outline: Molecular Networks 

•  Why Networks? 

•  Predicting Networks (yeast) 
◊  Propagating known information 

•  Dynamics & Variation of 
Networks 
◊  Across environments  
(in prokaryotes) 
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Example: yeast PPI 
network 

Actual size: 
◊  ~6,000 nodes 
→  Computational cost: ~18M pairs 

◊  Estimated ~15,000 edges 
 → Sparseness: 0.08% of all pairs (Yu et al., 
2008) 

Known interactions: 
◊  Small-scale experiments: accurate but few 
→  Overfitting: ~5,000 in BioGRID, involving 
~2,300 proteins 

◊  Large-scale experiments: abundant but 
noisy 
 → Noise: false +ve/-ve for yeast two-hybrid 
data up to 

 45% and 90% (Huang et al., 2007)
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Types of Networks 

Interaction networks 

[Horak, et al, Genes & Development, 16:3017-3033] 

[DeRisi, Iyer, and Brown, Science, 278:680-686] 

[Jeong et al, Nature, 41:411] 

Regulatory networks 

Metabolic networks 

Nodes: proteins or genes 
Edges: interactions 
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Predicting Networks 
How do we construct large molecular networks?  

From extrapolating correlations between functional genomics data with fairly 
small sets of known interactions, making best use of the known training data. 
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Training sets 

1 2 

4 3 

Known interactions 

Known non-interactions 

Unknown 

1 2 3 4 

1 0 1 ? 1

2 1 ? 0 ?

3 ? 0 ? ?

4 1 ? ? ?
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Network prediction: features 

•  Example 1: gene expression 

x1 = (0.2, 2.4, 1.5, …) 
x2 = (0.8, 2.2, 1.5, …) 
x3 = (4.3, 0.1, 7.5, …) 
… 
sim(x1, x2) = 0.62 
sim(x1, x3) = -0.58 
… 

Gasch et al., 2000

1 2 

4 3 

Similarity scale: 

1 -1 
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Network prediction: features 

•  Example 2: sub-cellular localization 

x1 = (1, 1, 0, 0, …) 
x2 = (1, 1, 1, 0, …) 
x3 = (1, 0, 1, 0, …) 
… 
sim(x1, x2) = 0.81 
sim(x1, x3) = 0.12 
… 

1 2 

4 3 

Similarity scale: 

1 -1 

http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif 



Do not reproduce without permission 

Data integration & Similarity Matrix 

1 2 

4 3 

1 2 

4 3 

1 2 

4 3 

1 2 3 4

1 1.00 0.57 0.55 0.40

2 0.57 1.00 0.66 0.89

3 0.55 0.66 1.00 0.79

4 0.40 0.89 0.79 1.00

1 2 

4 3 
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Learning methods 
An endless list: 
•  Docking (e.g. Schoichet and Kuntz 1991) 

•  Evolutionary (e.g. Ramani and Marcotte, 2003) 
•  Topological (e.g. Yu et al., 2006) 

•  Bayesian (e.g. Jansen et al., 2003) 

•  Kernel methods 

◊  Global modeling: 

•  em (Tsuda et al., 2003) 

•  kCCA (Yamanishi et al., 2004) 

•  kML (Vert and Yamanishi, 2005) 

•  Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005) 
◊  Local modeling: 

•  Local modeling (Bleakley et al., 2007) 

Let’s compare in a public challenge!  
(DREAM: Dialogue for Reverse Engineering Assessment and Methods) 
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Our work: efficiently propagating 
known information 

Training set expansion 
•  Motivation: lack of training examples 

•  Expand training sets horizontally 

Multi-level learning 
•  Motivation: hierarchical nature of 

interaction 

•  Expand training sets vertically 

DREAM3 in silico regulatory network 
reconstruction challenge 

Local model 1 Local model 2 

PPI predictions 

DDI predictions 

RRI predictions 
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Kernels 

Kernel: a similarity matrix that is positive semi-definite (p.s.d.) 

Similarity matrix 

Compute 
inner products 

p.s.d. implies 

Objects in an feature space 

2

1

3

4

Good for integrating heterogeneous datasets (protein 
sequences, PSSM, gene expression, …) 

– no need to explicitly place them in a common feature space 
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Kernel methods 

Use the kernel as proxy to work in the feature space 

Example: SVM (finding the best separating hyperplane) 

Maximize 

Subject to  Equivalent to 

2

1

3

4

The only thing that we 
need to know about the 
objects: their similarity 
values (inner products) 
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Kernel methods for predicting 
networks: local vs. global modeling

Global modeling: build one model for the whole network 

1 2 

4 3 

?

Pairwise kernel: consider object pairs 
instead of individual objects 
Problem: O(n2) instances, O(n4) 
kernel elements 

Direct methods: threshold the kernel 
to make predictions 
Problem: One single global model, 
may not be able to handle 
subclasses 

1 

3 
2 

3 2 

4 1 

4 

1 

2 

3 

4 

1 

1 

4 

4 2 

2 

3 

3 1 

4 

1 

2 

3 

4 

4 

4 2 

2 

3 

3 

1 2 3 4

1 1.00 0.57 0.55 0.40

2 0.57 1.00 0.66 0.89

3 0.55 0.66 1.00 0.79

4 0.40 0.89 0.79 1.00

Threshold: 0.7 

1 2 3 4

1 1.00 0.57 0.55 0.40

2 0.57 1.00 0.66 0.89

3 0.55 0.66 1.00 0.79

4 0.40 0.89 0.79 1.00
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Kernel methods for predicting 
networks: local vs. global modeling

Local modeling: build one model for each node 

1 2 

4 3 

?

1 

2 

4 

3 

2 

4 

Model for node 3: 

Problem: insufficient and unevenly distributed training 
data (what if node 3 has no known interactions at all?) 
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Our work: training set expansion 

•  Goal: 
◊  Utilize the flexibility of local modeling 

◊  Tackle the problem of insufficient training data 

•  Idea: generate auxiliary training data 
◊  Prediction propagation 

◊  Kernel initialization 

[Yip and Gerstein, Bioinformatics ('09, in press)] 
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Prediction propagation 

•  Motivation: some objects 
have more examples than 
others 

•  Our approach: 
◊  Learn models for objects with 

more examples first 

◊  Propagate the most confident 
predictions as auxiliary 
examples of other objects

1 2 

4 3 

1 

2 

4 

3 

1 

2 

4 

3 

1 

2 

4 

3 

1 

2 

4 

3 

[Yip and Gerstein, Bioinformatics ('09, in press)] 
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Kernel initialization 

•  Motivation: what if most 
objects have very few 
examples?  

•  Our approach (inspired by 
the direct method): 
◊  Add the most similar pairs in 

the kernel as positive examples 

◊  Add the most dissimilar pairs in 
the kernel as negative 
examples 

[Yip and Gerstein, Bioinformatics ('09, in press)] 

1 2 

4 3 

1 2 3 4

1 1.00 0.57 0.55 0.40

2 0.57 1.00 0.66 0.89

3 0.55 0.66 1.00 0.79

4 0.40 0.89 0.79 1.00

1 2 

4 3 
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Remarks 

•  Can be used in combination 

•  Prediction propagation theoretically related to co-
training (Blum and Mitchell, 1998) 
◊  Semi-supervised 

•  Similarity with PSI-BLAST 

•  Algorithm complexity O(nf(n)) of local modeling vs. 
O(f(n2)) of global modeling 

[Yip and Gerstein, Bioinformatics ('09, in press)] 
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Prediction accuracy (AUC) 

Observations: 
•  Highest accuracy by training set expansion 
•  Over fitting of local modeling without training set 

expansion 

•  Prediction propagation theoretically related to co-
training (Blum and Mitchell, 1998) 
◊  Semi-supervised (Similarity with PSI-BLAST) 

[Yip and Gerstein, Bioinformatics ('09)] 
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Complementarity of the two methods 

[Yip and Gerstein, Bioinformatics ('09, in press)] 
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From horizontal to vertical 

Training set expansion 
•  Motivation: lack of training examples 

•  Expand training sets horizontally 

Multi-level learning 
•  Motivation: hierarchical nature of interaction 

•  Expand training sets vertically

Local model 1 Local model 2 

PPI predictions 

DDI predictions 

RRI predictions 
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Protein interaction 

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information 

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Domain interaction 

Pfam domains: PF00107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information 

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Residue interaction 

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information 

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Combining the three problems 

Protein
interactions

Domain
interactions

Residue
interactions

i. Independent levels iii. Bidirectional flowii. Unidirectional flow

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Empirical results (AUCs) 

•  Highest accuracy by bidirectional flow 

•  Additive effect: 2 vs. 3 levels 

Ind. levels Unidirectional flow Bidirectional flow 

Level PD PR DR PD PR DR PDR 

Proteins 71.68 72.23 72.50 72.82

Domains 53.18 61.51 71.71 68.94 71.20

Residues 57.36 54.89 53.81 72.26 63.16 77.86

[Yip and Gerstein, BMC Bioinfo. ('09, press)] 
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Network Dynamics #2: 
Environments 

How do molecular networks change across environments?  
What pathways are used more ?  

Used as a biosensor ? 
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Global Ocean Survey Statistics (GOS) 

6.25 GB of data 
7.7M Reads 
 1 million CPU hours  
to process 

Rusch, et al., PLOS Biology 2007 
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Expressing 
data as 

matrices 
indexed by 

site, env. var., 
and pathway 

usage  

Pathway Sequences 
(Community Function) Environmental  

Features 

[Rusch et. al., (2007) PLOS Biology;  
Gianoulis et al., PNAS (in press, 2009] 
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The goal of this technique is to interpret cross-variance matrices 
We do this by defining a change of basis. 

a,b 

[ Gianoulis et al., PNAS (in press, 2009) ] 
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Environmentally  
invariant 

Environmentally  
variant 

Strength of Pathway co-variation 
with environment  

[ Gianoulis et al., PNAS (in press, 2009) ] 
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Conclusion #1: energy 
conversion strategy, 

temp and depth  

[ Gianoulis et al., PNAS (in press, 2009) ] 
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[ Gianoulis et al., PNAS (in press, 2009) ] 
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Why is their fluctuation 
in amino acid metabolism? 
Is there a feature(s) that  
underlies those that are  
environmentally-variant  
as opposed to those which are not? 

[ Gianoulis et al., PNAS (in press, 2009) ] 
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[ Gianoulis et al., PNAS (in press, 2009) ] 
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Outline: Molecular Networks 

•  Why Networks? 

•  Predicting Networks (yeast) 
◊  Propagating known information 

•  Dynamics & Variation of 
Networks 
◊  Across environments  
(in prokaryotes) 
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Conclusions on Networks:  
Predictions 

•  Predicting Networks 
◊  Extrapolating from the Training 

Set 

◊  Principled ways of using known 
information in the fullest possible 
fashion 

•  Prediction Propagation 

•  Kernel Initialization 

•  Multi-level learning 
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Conclusions: Networks Dynamics 
across Environments 

•  Developed and adapted techniques to 
connect quantitative features of 
environment to metabolism. 

•  Applied to available aquatic datasets, we 
identified footprints that were predictive 
of their environment (potentially could be 
used as biosensor).  

•  Strong correlation exists between a 
community’s energy conversion 
strategies and its environmental 
parameters (e.g. temperature and 
chlorophyll).   

•  Suggest that limiting amounts of cofactor 
can (partially) explain increased import of 
amino acids in nutrient-limited conditions.  
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TopNet – an automated web tool 

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);  
Similar tools include Cytoscape.org, Idekar, Sander et al] 

(vers. 2 : 
"TopNet-like  

Yale Network Analyzer") 

Normal website + Downloaded code (JAVA) 
+ Web service (SOAP) with Cytoscape plugin 
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More Information on this Talk 
TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks 

SUBJECT: Networks

DESCRIPTION:  
Joint Statistical Meetings 2009, Washington, DC, 2009.08.02, 
14:00-14:20; [I:JSM] (Very short networks talk, just with tse*, 
multilevel*, and metagenomics*. Justs fits into 19’ w. 1 questions 
(with some skipping of slides). PPT works on mac & PC and has many 
photos.)  

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily 
cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the 
site. For instance,  
the topic pubnet* can be looked up at  
http://papers.gersteinlab.org/papers/pubnet  ) 

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at  
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to 
relevant papers or link to gersteinlab.org).   
.  
PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see 

http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be easily 

queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt . 


