. Understanding Protein Function
- on a Genome-scale through the siides at Lectures.GersteinLab.org
Analysis of Molecular Networks

Mark B Gerstein
: Yale

(See Last Slide for
References
& More Info.)




The problem: Grappling with
Function on a Genome Scale?
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« >25K Proteins in Entire Human Genome

originally characterized on chr. 22
(with alt. splicing)

[Dunham et al. Nature (1999)]
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EF2 YEAST

Traditional single

molecule way to integrate

Descriptive Name:
Elongation Factor 2

Lots of references
to papers

Summary sentence
describing function:
This protein promotes the
GTP-dependent
translocation of the
nascent protein chain from
the A-site to the P-site of
the ribosome.

File

evidence & describe
function

Edt View Favortes Tools Help

Links > | Norton Antivirus ()

r = e > Datab.
' E @k Bl Z4 A

y :n !I b ‘\rO\t Text Search UniProt Knowledgebase
theN\yniversal protein knowledgebase _.

home About UniProt Getting Started Searches/Tools Databases Support/Documentation

General information about the UniProt/Swiss-Prot entry

Entry name EF2_YEAST
Primary accession number P32324
Entered in Swiss-Prot Release 27, 01-OCT-1993

Sequence was last modified Release 27, 01-0CT-1993

Annotations were last modified | Release 47, 01-MAY-2005

Protein description

Protein name ‘ Elongation factor 2
Synonyms ‘ EF-2
References
[1] | NUCLEOTIDE SEQUENCE (EFT1 AND EFT2).

MEDLINE=92112760; PubMed=1730643; [NCBI, ExPASy, EBI, Israel, Japan]
Perentesis J.P., Phan L.D., Laporte D.C., Livingston D.M., Bodley 1.W.;
“Saccharomyces cerevisiae elongation factor 2. Genetic cloning, characterization of
expression, and G-domain modeling.”;

G
FUNCTION This protein promotes the GTP-dependent translocation of the nascent protein chain from
the A-site to the P-site of the ribosome.

SUBCELLULAR LOCATION Cytoplasmic.

1 | V€027 9, HHDUMOL L1, = LEMBL VEIDEIIK) UUDJJ LLULINYIEYUE! ILE]

[pir [aa1778: aa1778 | _]LI
3

[ [ ntemet
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Some obvious issues in scaling single
molecule definition to a genomic scale

« Fundamental complexities
() Often >2 proteins/function

() Multi-functionality:
2 functions/protein

{ Role Conflation:
molecular, cellular, phenotypic



Some obvious issues in scaling single

 Fundamental complexities
() Often >2 proteins/function

¢ Multi-functionality:
2 functions/protein

() Role Conflation:
molecular, cellular, phenotypic
* Fun terms... but do they scale?....
() Starry night (P Adler, '94)

[Seringhaus et al. GenomeBiology (2008)]
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Hierarchies & DAGs of
controlled-vocab terms
but still have issues...

FZ01 - FZ01
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N isa e\mitochondrial fusion | -isa
AT D S ; g
biogenesis of N £ Y ik iy (/membrane‘\\ Isa Vi mitochondrion\\
cellular components o D i \__ fusion / o . ‘ organization
\_ (mitochondrion) ¥ i o @ organelle fusion> \\and biogenesis J
—_— ( D) o) isa N = — @ =
: D) 5 C ok ) i is a
is a 4 < /_}7\// J eSS Isa
G T ) " membrane organization l o ~
EENED = = & and biogenesis /, organelle organization
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i 3 P i S
. ( cellularprocess |
isa e — 8
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|biological process D (biclogical process |

MIPS (Mewes et al.) GO (Ashburner et al.)

[Seringhaus & Gerstein, Am. Sci. '08]
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Towards Developing Standardized
Descriptions of Function

» Subjecting each gene to standardized expt. and
cataloging effect

() KOs of each gene in a variety of std. conditions => phenotypes
( Std. binding expts for each gene (e.g. prot. chip)

 Function as a vector nucleic

acids proteins

protein 1 10| O 0 0 0 0 |...... 0 0 0o ...
protein 2 0 0.9 0 0 0 0 ... 0 0 0o ...
protein3 | 1.0 0 1.0 0 0 0 |..... 0 0 0o ...
protein 4 0 0 0 0 08| 0 |..... 0 0 1.0 ...
protein5 | 1.0| O 0 0 0 0 |...... 0 0.9 0o ...
proten6 | 09, o | | ... L
protein 7 ocjo8y { t + t--d 0 ]

Interaction Vectors [Lan et al, IEEE 90:1848]



Networks (Old & New)

Fringe: Vital in boundary formation Itch: linked to

RBPMS o CSNK2A1
in developing fly wing. \_itchy skin in mice /
— B - : s EPSs CSNK2A2
Numb: mutations impair 2 " TPs3

' ~ sensory organs in flies DLK1 Dvl AP2A

Dvl T & A |

: ' Fringe GS,KS\B Numb MDM2

Fringe Numb

| s Deltex | GRB2

e B Deltex
Delta Y Notch ] R Delta CTNNBT1 | MAML
Notch: with defects, flies APP
A A [ ,

iy develop notches in wings ZL —— SMAD3

Serrate Serrate - — PCAF | ™~ LEF1
/| PSE2 = PSEN RN .
~ ) vvi LYY skip :
/ Skl Biliis 4 BLET NCSTN — APH-1
o CSL RELA CSL
TAGE e G22P1
| ABLA1
DLG1 APBA1

Classical KEGG pathway

Same Genes in High-throughput Network

[Seringhaus & Gerstein, Am. Sci. '08] %



Networks as a universal language

* Internet
[Burch & Cheswick]

—%  Electronic
Circuit

Disease Neural Network
Spread y
[Krebs] AlbertLészlé .
Protein ;
Interactions g ¢
[Barabasi] g Social Network ~ °




MICHAEL BROWN, FEMA,
FEDERAL AGENCIES.

“It's the responsibiliy of faith-based

Using the

position in Z/

Ii; ﬁ: '.;ﬁ w? ?
b5 il vy g %
networks to s\
| 4.+ %
d es Cl'i b e ds ., f% gmwm%m X

BILL
CLINTON

function N/

Guilt by association

Rod Blagojevich
Governor

Gov.
KATHLEEN
BLANCO

Antoin ‘Tony’ Shita e
ris Kelly
Campaigr

John Harris
Chief of Staff

organizations, of churches and charities
and others to help those peoplo.”

“He has been asked 1o retum to Washington immediately.

£
Wﬂ‘
; g
oo B
g
BILL MAMER

%@
<,
%
X"o
%,
%,

\ /

Finding the

causal regulator

(the "Blame

Game")

“To the extent that the federal
govemment didn't fully do its
Job right, | take responsibility.”

PEOPLE WHO
DION'T
EVACUATE

“The anthem of the self-
loathers. ... You can never
s ™ blame victims. You can

never blame the poor. ...
Even those who didn't get
out of New Orloans, it's not
their fault. Even those that
could and didn't it's not
their fault, it's not their
faul*

“You cannot read a newspaper
without the gloating and the
happiness with which the
mainstream pross is reporting tho
president’s approval numbers.

B8 Marsh The New York Tames

STATE HEALTH AND INDIVIDUALS AND Lobbyist 1 CHICAGO
PENSION BOARDS FUND-RAISERS w b TRIBUNE Tribune
Financial
Advisor
Stuart g Ovcsgn Trbane | : .
Levine Individual A Fund-raiser A 00 e
Board ‘ X '
member ~ -
g =z ph Editorial
William Cellini i Board
Bo, ber
Individual B Engineering
Firm 1
Wiinois Wrigley A
Health Field —
Facilities XSt
_ - Hospital Sam Zell
Planning William Cellini Ali Wie
- T i Ata Executive 1 RIS
Board TRS Board member SR Contributor 1 Owner of the

Contractor 1

Tribune Company

[NY Times, 2-Oct-05, 9-Dec-08]
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Combining networks forms an ideal way
of integrating diverse information

l . . —— Metabolic

............. » Transcriptional
regulatory
network

— Physical protein-
protein Interaction :

................ Co-expression
Relationship

Part of the Genetic interaction

TCA cycle (synthetic lethal)
Signaling pathways

~
~




Outline: Molecular Networks

* Why Networks?

* Predicting Networks (ye.s
() Propagating known information

« Dynamics & Variation of

Networks

¢ Across environments
(in prokaryotes)

12 - Lectures.GersteinLab.org ¢



Example: yeast PPI
network

Actual size:

() ~6,000 nodes

— Computational cost: ~18M pairs
( Estimated ~15,000 edges e

— Sparseness: 0.08% of all pairs (Yu et al., o

2008) i

Known interactions: R

( Small-scale experiments: accurate but few

— Qverfitting: ~5,000 in BioGRID, involving

~2,300 proteins
() Large-scale experiments: abundant but

noisy

— Noise: false +ve/-ve for yeast two-hybrid

data up to

45% and 90% (Huang et al., 2007)

] ] ] § ¥ ] ] ?

(c)'09
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Types of Networks

aoscf“""m factors and Cofacy,
<«

)

IRX4

Target genes

Regulatory networks

Interaction networks

Nodes: proteins or genes
Edges: interactions

[Horak, et al, Genes & Development, 16:3017-3033]
[DeRisi, Iyer, and Brown, Science, 278:680-686]
[Jeong et al, Nature, 41:411]

Ethanol

33
Pyruvate —{PBC1.56— Acetaldehyde
Glyoxylate 31 2
Cycle

Acetyl-CoA y A Acetate
23
Oxaloacetate l
49 m 24
Oxaloacetate
28,
6.2| 62
9. 7
30
E{Sﬂ TCA Cycle
Isocitrate  Glyoxylate 37
aeketoglutarate
5. 538,
B3
X
FT) Succinat ite

5 B YGRzaa g

Metabolic networks

14
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Predicting Networks

How do we construct large molecular networks?
From extrapolating correlations between functional genomics data with fairly
small sets of known interactions, making best use of the known training data.

(c) '09

15



Training sets

Known interactions

Known non-interactions

Unknown

()09

16



Network prediction: features

« Example 1: gene expression

1
x,=(0.2,2.4,1.5, .

)
x,=(0.8,2.2,1.5,...)
0

x5 =(43,0.1,7.5, .

sim(X;, X,) = 0.62 3
sim(X;, X3) =-0.58

Similarity scale:

Gasch et al., 2000 1 _ -1

c@/ D

17



Network prediction: features

« Example 2: sub-cellular localization

—

sim(x, x,) = 0.81
sim(X,, X;3) =0.12
http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif

Similarity scale:
1

18.



Data integration & Similarity Matrix

19.



Learning methods

An endless list:

» Docking (e.g. Schoichet and Kuntz 1991)
Evolutionary (e.g. Ramani and Marcotte, 2003)
Topological (e.g. Yu et al., 2006)
Bayesian (e.g. Jansen et al., 2003)
Kernel methods
( Global modeling:
« em (Tsuda et al., 2003)
« kCCA (Yamanishi et al., 2004)
« kML (Vert and Yamanishi, 2005)

» Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
¢ Local modeling:

» Local modeling (Bleakley et al., 2007)

Let’s compare in a public challenge!
(DREAM: Dialogue for Reverse Engineering Assessment and Methods)

20



Our work: efficiently propagating

known information

Training set expansion

« Motivation: lack of training examples
» Expand training sets horizontally
Multi-level learning

 Motivation: hierarchical nature of
interaction

« Expand training sets vertically

DREAMS in silico regulatory network
reconstruction challenge

Local model 1

Local model 2

PPI predictions

!

!

RRI predictions

()09
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Kernel: a similarity matrix that is positive semi-definite (p.s.d.)

X3

-0.6 &

X4

Kernels

Compute
inner products

»
»

Objects in an feature space

A

p.s.d. implies

A W NN —

1 2 3

4

1.00 0.72 045 -0.56
0.72 1.00 -0.30 -0.98

045 -0.30
-0.56 -0.98 049

1.00 049

1.00

Similarity matrix

Good for integrating heterogeneous datasets (protein
sequences, PSSM, gene expression, ...)

— no need to explicitly place them in a common feature space

N
N



Kernel methods

Use the kernel as proxy to work in the feature space

Example: SVM (finding the best separating hyperplane)

101-

20

A

Maximize E)Li _%Ezlikjyiyj<xi’xj>
i i

Equivalentte g bject to A =0
2 A’iyi =0

The only thing that we
need to know about the
objects: their similarity
values (inner products)

23



Kernel methods for predicting
networks: local vs. global modeling

Global modeling: build one model for the whole network

0.55 0.66 1.00 0.79 3 0.55 0.66 1.00

may not be able to handle

0.79

1.00

Q
Pairwise kernel: consider object pairs Q @8
instead of individual objects 8 G Q
Problem: O(n?) instances, O(n#) 8 8 S
kernel elements 8
Direct methods: threshold the kernel ror s LR
to make predlctlons 1 100 057 055 040 1 1.00 057 0.55 040
Problem: One single global model, ~ ° | — 1= (™ 1™ | Thehodiog ® } ° L~ L= |

0.40 0.89 0.79 1.00 4 0.40 0.89 0.79

subclasses

(c)'09
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Kernel methods for predicting
networks: local vs. global modeling

Local modeling: build one model for each node

@

Model for node 3: (3):

~ @

Problem: insufficient and unevenly distributed training
data (what if node 3 has no known interactions at all?)

25



Our work: training set expansion

» Goal:

() Utilize the flexibility of local modeling

() Tackle the problem of insufficient training data
 |dea: generate auxiliary training data

() Prediction propagation

( Kernel initialization

[Yip and Gerstein, Bioinformatics (09, in press)]

26



Prediction propagation

* Motivation: some objects
have more examples than
others

e Qur approach:
() Learn models for objects with 0 @
more examples first 9
¢ Propagate the most confident @ A : K\ 2
predictions as auxiliary (4) = @ 8
examples of other objects

[Yip and Gerstein, Bioinformatics (09, in press)]



Kernel initialization

* Motivation: what if most
objects have very few
examples?

» Our approach (inspired by
the direct method):

() Add the most similar pairs in
the kernel as positive examples

() Add the most dissimilar pairs in
the kernel as negative
examples

28

[Yip and Gerstein, Bioinformatics (09, in press)]



Remarks

 Can be used in combination

 Prediction propagation theoretically related to co-
training (Blum and Mitchell, 1998)

() Semi-supervised
« Similarity with PSI-BLAST

* Algorithm complexity O(nf(n)) of local modeling vs.
O(f(n?)) of global modeling

[Yip and Gerstein, Bioinformatics (09, in press)]

29



Prediction accuracy (AUC)

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int

Maode 1

direct 58.04 66.55 64 .61 57.41 51.62 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 5048 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 556.90 53.13 63.74 68.20 81.65
local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
local+pp 73.89 75.25 7743 75.35 71.60 71.51 74 .62 71.39 83.63
local+ki 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
local+pp+ki 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59 I

Observations:
» Highest accuracy by training set expansion

 Over fitting of local modeling without training set

expansion

 Prediction propagation theoretically related to co-
training (Blum and Mitchell, 1998)

() Semi-supervised (Similarity with PSI-BLAST)

[Yip and Gerstein, Bioinformatics ('09)]

30



Complementarity of the two methods

O |ocal
X local+pp
° |ocal+ki

® local+pp+ki

85
p o &
80 X a6
>
75 t o .
g 70 | b3 O
0O
S 65 |
< %
60 |
Q O
95
at
50 1 1 1 1 1
0 1000 2000 3000 4000 5000
Sample size (number of gold standard positive interactions)

[Yip and Gerstein, Bioinformatics (09, in press)]

()09
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From horizontal to vertical

Training set expansion

« Motivation: lack of training examples

» Expand training sets horizontally
Multi-level learning

« Motivation: hierarchical nature of interaction
« Expand training sets vertically

Local model 1

Local model 2

PPI predictions

!
!

RRI predictions

32



Protein interaction

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

33.
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Domain interaction

Pfam domains: PFO0107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

34.
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Residue interaction

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

35
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Combining the three problems

Protein
interactions

Domain
interactions

' Residue
ﬁg interactions

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

———————

—_——— e e ———

i. Independent levels

_

ii. Unidirectional flow

A

—_— e — — —

Y

iii. Bidirectional flow

()09
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Empirical results (AUCs)

Ind. levels Unidirectional flow Bidirectional flow
Level PD PR DR PD PR DR PDR
Proteins 71.68 72.23 72.50 72.82
Domains 53.18 61.51 71.71 68.94 71.20
Residues 57.36 54.89 53.81 72.26 63.16 77.86

. Highest accuracy by bidirectional flow
. Additive effect: 2 vs. 3 levels

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

\4

()09
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Network Dynamics #2:
Environments

How do molecular networks change across environments?
What pathways are used more ?
Used as a biosensor ?

38



What is metagenomics?

Genomics Approach

Culture Microbes

Extract DNA

— P —

Metagenomics Approach

Collect Sample

Extract DNA

- -

Sequence Assemble and Annotate
ATCGTATA - it JL
CGCGAAG  —» = /7 =

ACGTCTGA N
AGTGCTGCT T Conig 1 ()

Sequence Partially Assemble and Annotate

ATCGTGATAGATGATAGTAGA
ATGCTGCATGCATCTAGCACT ~f—
ACAGTAGCTAGCTACGTACTA

CAGCTGACTAGCTAGCTAGCT ——
ACGTAGCATGCTAGCTAGCAG —
ACGTACGTAGCTAGCTAGCTAG  ——— )

ACGTACGTACGTAGCTAGCATC B
AGTCGACTGAGCCAGTGATGAT _—
ACGATGCATGAGCAGATGCTAC

AGATCGTAGCATGCTAGCATGCT T
ACGTACGTAGCTAGCTAGCTAAG

AGCTAGCATGCTAGTAGCATGAG - —
ACGATGCTAGCTAGCTAGCTGATA

TCGATCAGCATGCTACGATGCAAG —
ACGATCGATGCTAGCTAGCTAGCAT

AGCTAGCTAGTCAGCTAGCTAGATG

39 - Lectures.GersteinLab.org ¢



Global Ocean Survey Statistics (GO

SCIENCE IN THE
PETABYTEERA

bana (hypersaline)

034

27'28
33

o3

USA
5 Canada
2 Gulf of Maine 7 Northern Gulf of Maine 7
8Newport Harbor, RI 6 Bay of Fundy, Nova Scotia (Estuary) %o
9 Blocklsland,NY 5 Bedford Basin, Nova Scotia (Embayment), 2® 3
:? gaelr:wﬁ:::.lg-' N Estuaryy | OutSde HalifaxNovaScotia 4y .58
24 ry) il
12 Chesapeake BayMD (Estuars) "™ 22" Gu"dma'";..‘ 1
13 Off Nags Head, SC
2 o713
North America B o
14 South ofCharkston SG !
14
USA 00
15 Off Key West, L
16 Gulf of Mexico Atlantic
160®15 Ocean

1,7 Vucatan ChanRéliMaxico

el18

18 Rosario Bank, Honduras

Costa Rica

25 Dirty Rock,Cocos sland
(Fringing Reef) 19
2330 mi from Cacos lsland®

020
°

21
25003 *22

22 250 mi from Panama City

® 134 mi NE of Galapogos, Ecuador

7

Equatorial Pacific TAO, International

Panama

19 Northeast of Colon

20 Lake Gatun (Freshwater)
21 Gulf of Panama

South
America

6.25 GB of data
7.7TM Reads

1 million CPU hours
to process

Rusch, et al., PLOS Biology 2007

()09

o
A



Pathway Sequences

(Community Function) \

Environmental
Features

Metabolic
B1 3800 | 1400 | 1000
gy |2200 | 100 [ 400

Sites

Environmental

Metadata Temp NaCl Depth

Sites

v

15°C

27.2] 10m

23°C

366 S5m

READS —— PROTEIN FAMILIES ——> PATHWAYS

o

CCGTGAGCACGATGCGCmmmrmeeme
o TGCTCATGCT—

CCGTGAGCACGA ATGCGETGETEATEC T
ATCGTGACGCGATG
C\TQCTCHTCCT I——
GCGATCGATCGATCGTAG

TGCTCCTAGCATGCT
GCGATCGATCGATCGTAGC
TGCTGCTAGCATGCT---
CCGTGAGCACGATGCGC -
GTATC( T

GCATGCTT

GCG T(g rrAT T’:

PATHWAYS
® N
smes = 2t1+3 P, =2+44+3
P,=5+246 P, =5+7+6

P.=f +f +f
&=Q+g+g

Expressing

data as
matrices

indexed by

site, env. var.,

and pathway

usage

[Rusch et. al., (2007) PLOS Biology;
Gianoulis et al., PNAS (in press, 2009]
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Metabolic

Sites

Pathways
B1
B2

\

Simple Relationships: Pairwise

Correlations

Environmental

3800 | 14004 1000
2200 | 1004| 400

[ Gianoulis et al., PNAS (in press, 2009) ]

Environmental Features

Chlorophyll

Temp

Ml |

05

- 00

I} I|||I|I|| |

-0.

Nn< O ST~ T

Cobalamin Biosynthesis

1

Itl

| Photosystem Il

Photosystem |

Carbon Fixation (Dark rx)

| Glutamine Degradation

|| IIW l

Predicted Temperature

Metadata Te NaCl §Depth
- B1 15°CH 27.2 JJ10m
ites >
B2 23°Cf 366 ] 5m
\J
L ]
- 4 ° .
L ]
o~ oo L ° L]
] * : o ®
(=% o . . o L] .
o o ® L .o L]
I 4 ) [ ] °
° [ ]
T . =68
T T . T T T
_2 -1 0 1 2

Actual Temperature
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Environmental-Metabolic Space

CCAFootpﬂnt
=X .
34 E P3 n\\\
| 2 B2 aa P\
/ . \.l
81 .'.nﬂ 8.5 BS v] g : ',,' P1 Depth‘ 'l.‘.
max B3, . BS —» 234 2 ;
corr B2, -1 B4 \?3 =7\ pae |/ |
=
NaCl Depth @) s2i\ Ps
‘ = . \Tempy
. I . . Eol .
Linear combination of Linear combination of SQ. wnssseiEey L

lenvironmental| features. [pathways

10 05 00 05 10
Normalized Weights (Dim 1)

The goal of this technique is to interpret cross-variance matrices
We do this by defining a change of basis.

Given X = {xl,xz,....,xn} and Y={y1,,y2,...,ym}

EX EX,Y
2y 2rx

ay,,b
\/a’zua\/b’zzzb

max Corr(U,V) =
a,b

C =

[ Gianoulis et al., PNAS (in press, 2009) ]
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Strength of Pathway co-variation
with environment

CCA structural correlation

Environmentally Environmentally
invariant variant

CCA structural correlation

[ Gianoulis et al., PNAS (in press, 2009) ]
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Conclusion #1: energy
conversion strategy,
temp and depth

KEGG Module
® -
o
ATPase
Photosynthesis Icomplex
@
—@

o o e aQ o] o [ o
Oxidative , o o | o o o o | o | o
Phosphorylation | Y | |

o o’ e [“-eo | e e

o o o © a o
ATPase
complex

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #2: Outer Membrane
components vary the environment

[ Gianoulis et al., PNAS (in press, 2009) ] o
<



Conclusion #3: Covariation of AA
biosynthesis and Import

Why is their fluctuation

in amino acid metabolism?

Is there a feature(s) that

underlies those that are
environmentally-variant

as opposed to those which are not?

His degradation Trp QM

"9

[ Gianoulis et al., PNAS (in press, 2009) ] l;



Biosensors:
Beyond Canaries in a Coal Mine

[ Gianoulis et al., PNAS (in press, 2009)] -

)
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Outline: Molecular Networks

* Why Networks?

* Predicting Networks (ye.s
() Propagating known information

« Dynamics & Variation of

Networks

¢ Across environments
(in prokaryotes)

4 9 - Lectures.GersteinLab.org ¢



Conclusions on Networks:

§

>/

Predictions

* Predicting Networks

() Extrapolating from the Training
Set

{ Principled ways of using known

information in the fullest possible
fashion

* Prediction Propagation
« Kernel Initialization
* Multi-level learning

()09
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Conclusions: Networks Dynamics
across Environments

« Developed and adapted techniques to
connect quantitative features of
environment to metabolism.

« Applied to available aquatic datasets, we
identified footprints that were predictive
of their environment (potentially could be
used as biosensor).

« Strong correlation exists between a
community’s energy conversion
strategies and its environmental
parameters (e.g. temperature and
chlorophyll).

« Suggest that limiting amounts of cofactor
can (partially) explain increased import of
amino acids in nutrient-limited conditions.




tYNA

- an automated web tool (vers. 2
"TopNet-like
Yale Network Analyzer")

/] tYNA - Control Panel osoft Internet Explorer =8| x| <
Ble Edt View Favortes Tools Help ‘ o
O Back ~ () - d ﬂ ;] /' ) search | Favorites 4% ‘ LS < E Py
address [&] Order=idicategoryOrder=id DVANCED_VIEWEIistTyp sethetw x| £ Go | ks | & - -
= [camnz)
= ==
tYNA =
<>
Getting started AP| WSDL Download tYNA | Il guide Plugins for Cytoscape Contact Known problems
You are logged in as kevin. Logout View: Simple Advanced
List | Owned ~| |Biological ¥| networks with I(Attrihute name)j =|(A|trihute value)j List =
= =
Workspace manager Networks in database (upload download ) = o 3 <
Load an existing network © Creation >
1D Mame Creator date <
Load 14. Uetz 2000 yeast two ... ¥ 14 Uetz 2000 yeast two hybrid kevin  21-Feb0B  Delete @
15 Ito 2001 yeast two hybrid kevin  21-Feb-06  Delete
Into workspace 0 ¥ >
16 Ho 2002 pull down kevin  21-Feb-06  Delete
Categorized by Nil i 17 Gavin 2002 pull down kevin  21-Feb-06  Delete Display options:
= Default col
Load 18 Jansen 2003 PIT kevin  21-Feb0B  Delete elaull E21018
Node: [ blue | Edge: | | Text: | =l
19 MIPS yeast PPI kevin  21-Feb-06  Delete Special coloring: @
Current working networks in your workspaces: 21 BIND yeast data Kkevin  21-Feb06  Delete © None
0 i . geq, 1, value, neighbors=false,
" in‘:el;sectian( o5 9 22 DIP yeast data kevin  21-Feb-06  Delete @ Color gradient: | Degree | of | Original network =] from [areen = to]red ~|
"Uetz 2000 yeast two hybrid”, 23 Kim 2006 structural interaction  kevin ~ 21-Feb-08  Delete c =
"to 2001 yeast two hybrid") ! Color class:  Class name: [j
24 Han 2004 FY| data kevin  21-Feb-06  Delete Redraw 3
Waorkspace 1 (empty) s
25 Luscombe 2004 regulatory kevin  21-Feb-06  Delete | e — o
WokspaceZ  (empty) ‘ T
Waorkspace 3: (empty) e EE . Wode |[Edgo g‘,"“eﬂe‘:' Degrees @ C|||stering§oetfcienls ‘ )
ategory (oot | Count |COMPONENts
i e D Name Creator Creation date A4 Avg S D Mm Max. |Avg. |S.0. |Min [Max. Avg. |S.D. |Min. |Max Min.
e-network analysis
- e | ‘n"g‘v“v':’k ‘ 275‘ 137‘ 109 1.30 |0.74 7004|019 |0.00 | 1.00 251 [157 200.00
& 4 Internet

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);
Similar tools include Cytoscape.org, ldekar, Sander et al]
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More Information on this Talk

TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION:
Joint Statistical Meetings 2009, Washington, DC, 2009.08.02,
14:00-14:20; [I:JSM] (Very short networks talk, just with

and . Justs fits into 19’ w. 1 questions
(with some skipping of slides). PPT works on mac & PC and has many
photos.)

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily
cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the
site. For instance,

the topic can be looked up at

http://papers.gersteinlab.org/papers/ )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see
http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily
queried from flickr, vizz http: / /www. £1lickr.com/photos/mbgmbg/tags/kwpotppt




