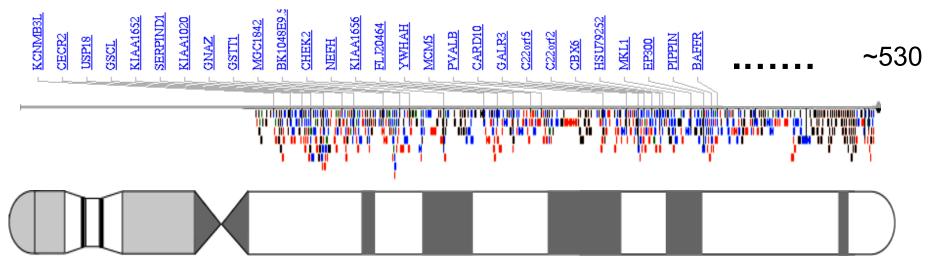
Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

slides at Lectures.GersteinLab.org

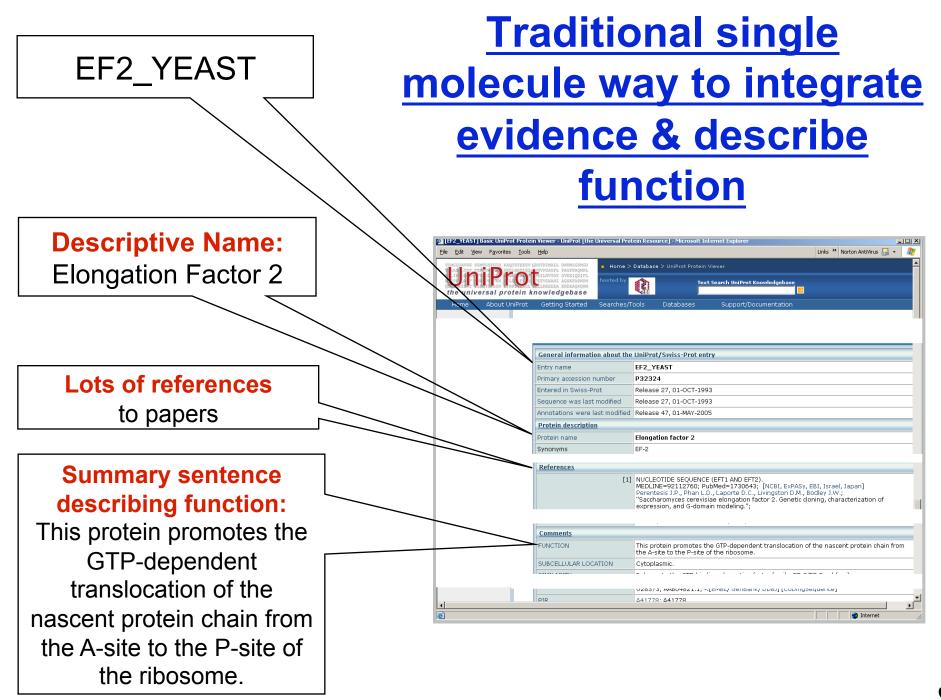
Mark B Gerstein Yale

> (See Last Slide for References & More Info.)

The problem: Grappling with Function on a Genome Scale?



- 250 of ~530 originally characterized on chr. 22 [Dunham et al. Nature (1999)]
- >25K Proteins in Entire Human Genome (with alt. splicing)



3 - Lectures.GersteinLab.org

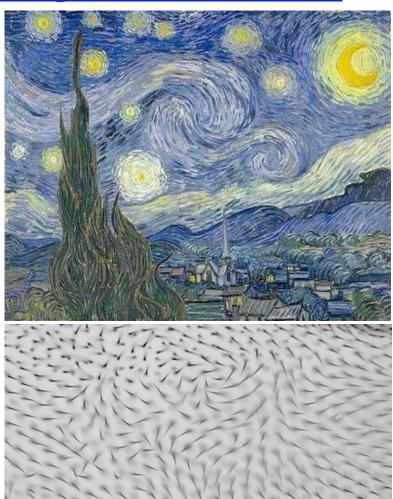
(c) '09

Some obvious issues in scaling single molecule definition to a genomic scale

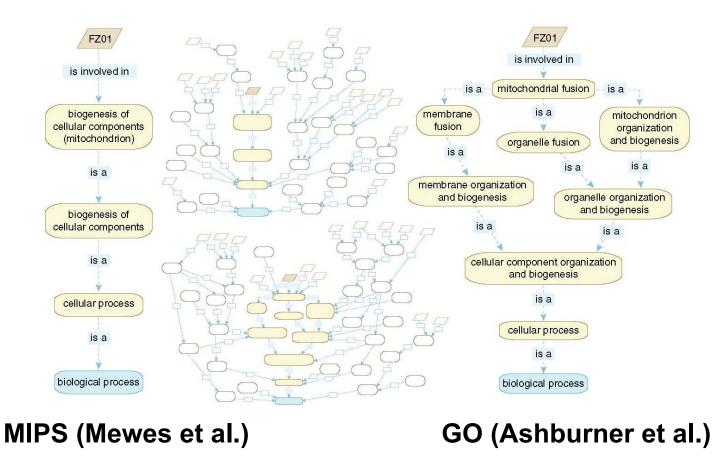
- Fundamental complexities
 - ◊ Often >2 proteins/function
 - ♦ Multi-functionality:2 functions/protein
 - Role Conflation: molecular, cellular, phenotypic

Some obvious issues in scaling single molecule definition to a genomic scale

- Fundamental complexities
 - ◊ Often >2 proteins/function
 - Multi-functionality:2 functions/protein
 - Role Conflation: molecular, cellular, phenotypic
- Fun terms... but do they scale?....
 - ♦ Starry night (P Adler, '94)



Hierarchies & DAGs of controlled-vocab terms but still have issues...



<u>Towards Developing Standardized</u> <u>Descriptions of Function</u>

- Subjecting each gene to standardized expt. and cataloging effect
 - \Diamond KOs of each gene in a variety of std. conditions => phenotypes
 - \Diamond Std. binding expts for each gene (e.g. prot. chip)
- Function as a vector

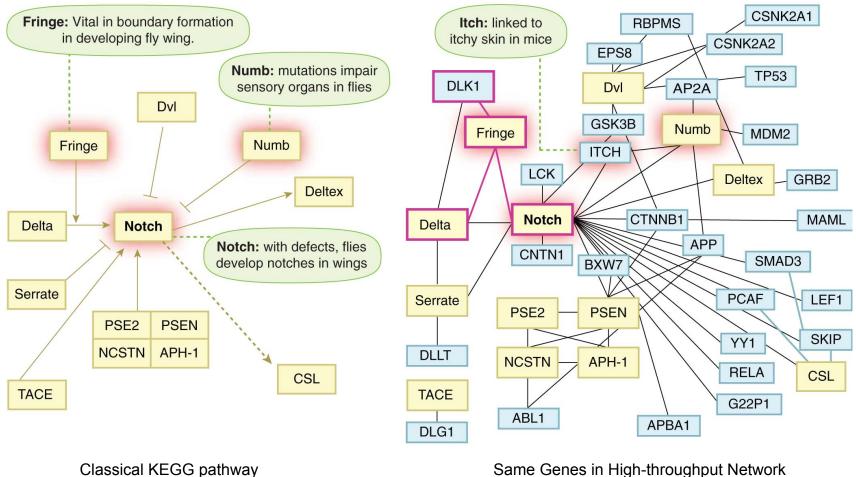
nucleic acids small molecules

proteins

	DNA	RNA	ATP	Metal	CoA	NAD		G protein	CDC28	Calmodulin	
protein 1	1.0	0	0	0	0	0		0	0	0	
protein 2	0	0.9	0	0	0	0		0	0	0	
protein 3	1.0	0	1.0	0	0	0		0	0	0	
protein 4	0	0	0	0	0.8	0		0	0	1.0	
protein 5	1.0	0	0	0	0	0		0	0.9	0	
protein 6	0.9	0									
protein 7	0	0.8									

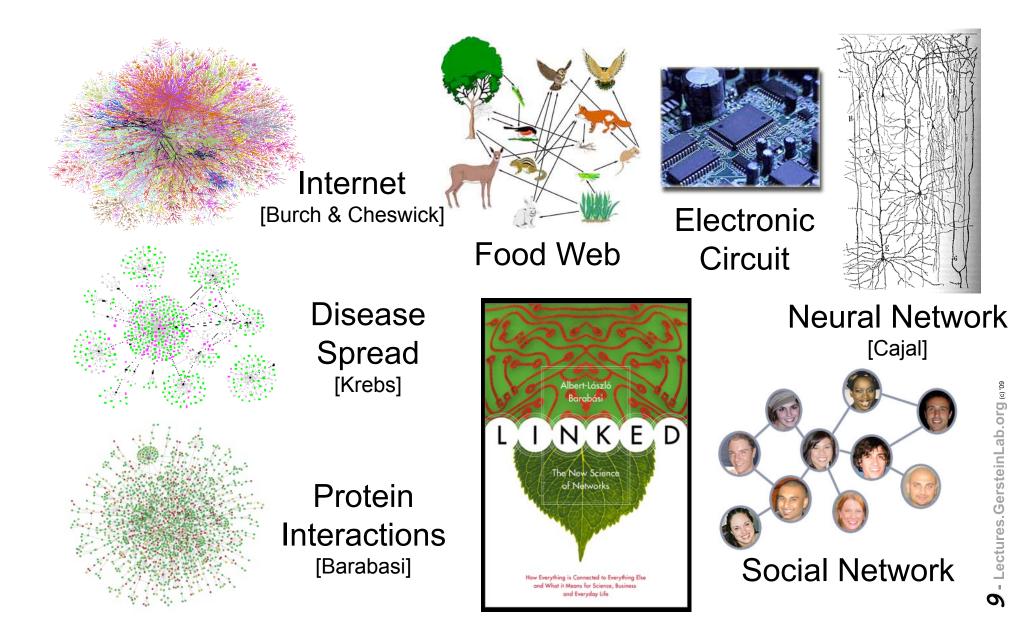
Interaction Vectors [Lan et al, IEEE 90:1848]

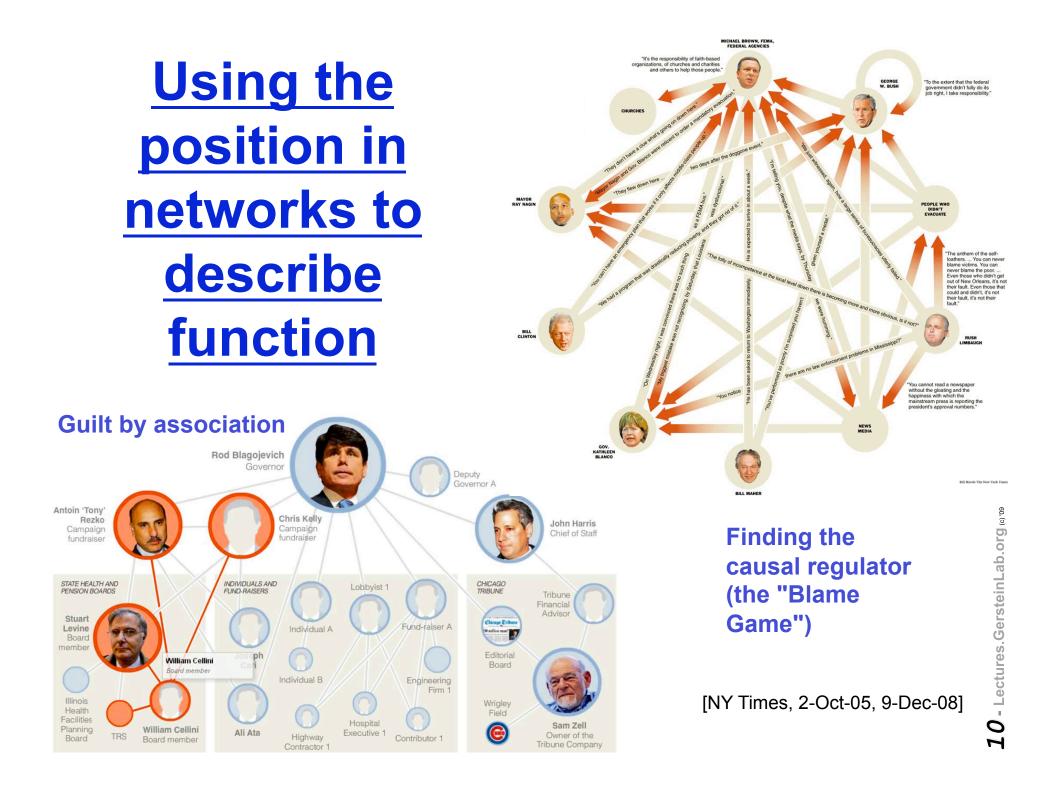
Networks (Old & New)



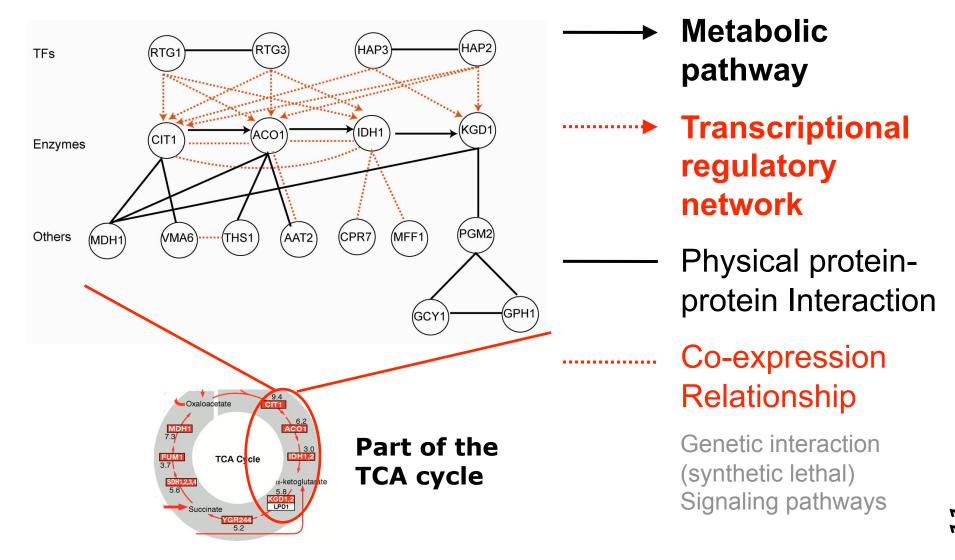
Same Genes in High-throughput Network

Networks as a universal language





<u>Combining networks forms an ideal way</u> of integrating diverse information



Outline: Molecular Networks

- Why Networks?
- Predicting Networks (yeast)
 Propagating known information
- Dynamics & Variation of Networks
 - Across environments
 (in prokaryotes)

Example: yeast PPI network

Actual size:

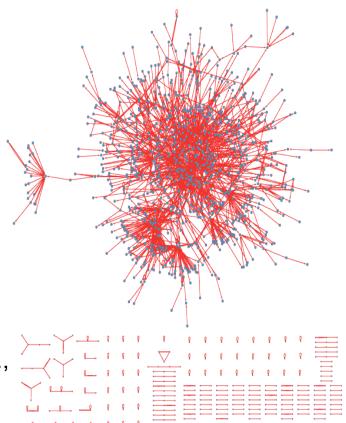
- \diamond ~6,000 nodes
 - → Computational cost: ~18M pairs
- ♦ Estimated ~15,000 edges
 → Sparseness: 0.08% of all pairs (Yu et al., 2008)

Known interactions:

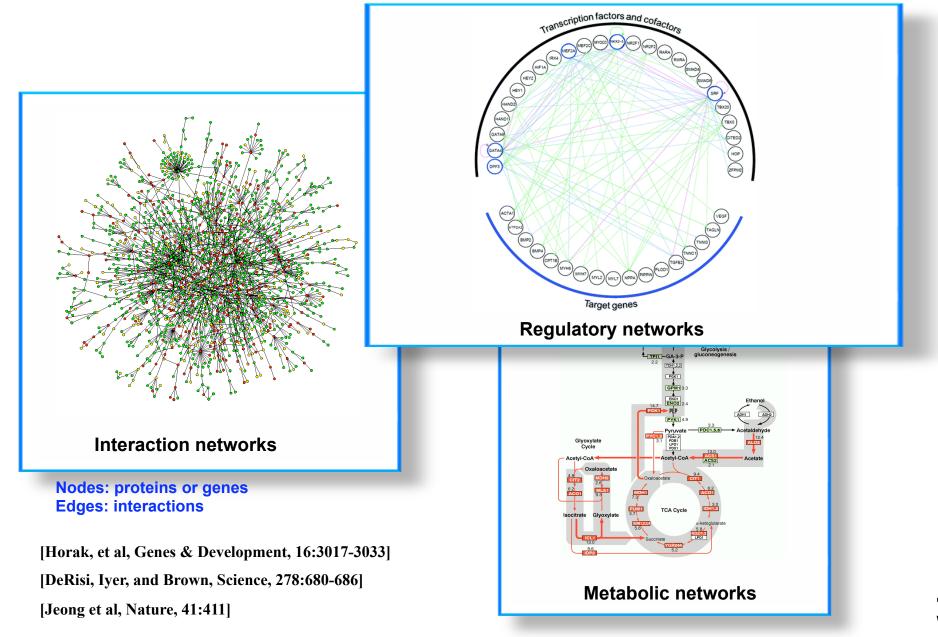
- $\Diamond\,$ Small-scale experiments: accurate but few
 - \rightarrow Overfitting: ~5,000 in BioGRID, involving
 - ~2,300 proteins
- Large-scale experiments: abundant but
 noisy

 \rightarrow Noise: false +ve/-ve for yeast two-hybrid data up to

45% and 90% (Huang et al., 2007)



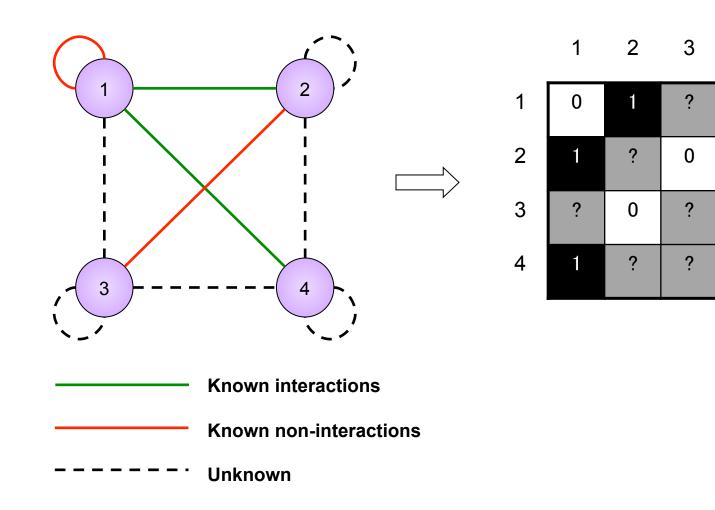
Types of Networks



Predicting Networks

How do we construct large molecular networks? From extrapolating correlations between functional genomics data with fairly small sets of known interactions, making best use of the known training data.

Training sets



4

1

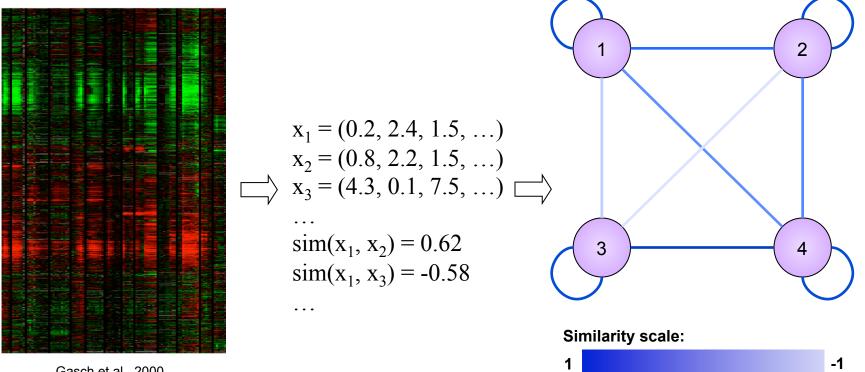
?

?

?

Network prediction: features

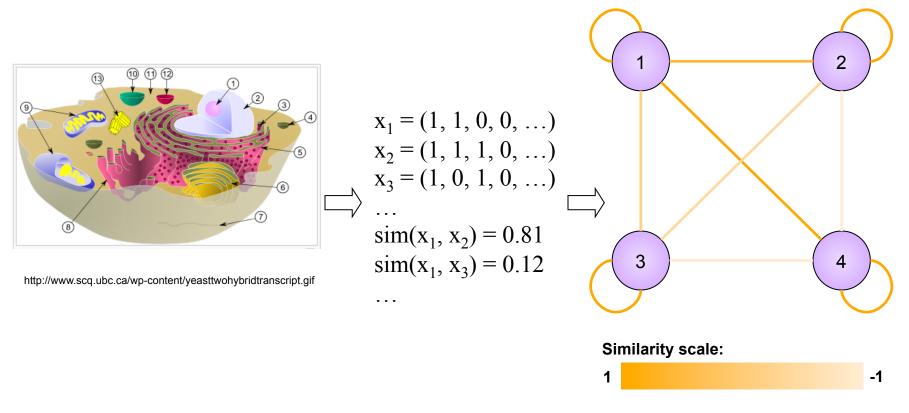
• Example 1: gene expression



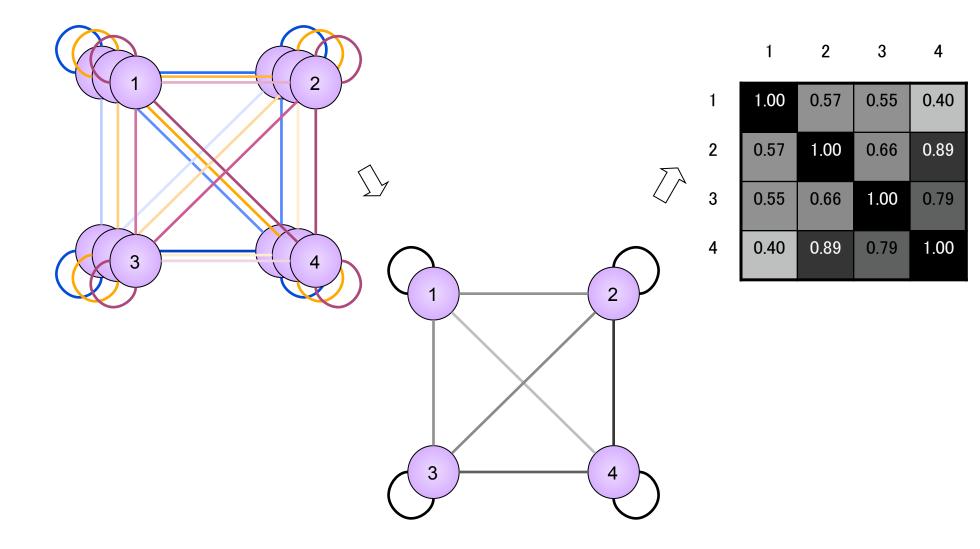
Gasch et al., 2000

Network prediction: features

• Example 2: sub-cellular localization



Data integration & Similarity Matrix



19 - Lectures.GersteinLab.org (0) 00

Learning methods

An endless list:

- Docking (e.g. Schoichet and Kuntz 1991)
- Evolutionary (e.g. Ramani and Marcotte, 2003)
- Topological (e.g. Yu et al., 2006)
- Bayesian (e.g. Jansen et al., 2003)
- Kernel methods
 - \Diamond Global modeling:
 - em (Tsuda et al., 2003)
 - kCCA (Yamanishi et al., 2004)
 - kML (Vert and Yamanishi, 2005)
 - Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
 - $\Diamond\,$ Local modeling:
 - Local modeling (Bleakley et al., 2007)

Let's compare in a public challenge! (DRFAM: Dialogue for Reverse Engineering Assessment and

(DREAM: Dialogue for Reverse Engineering Assessment and Methods)

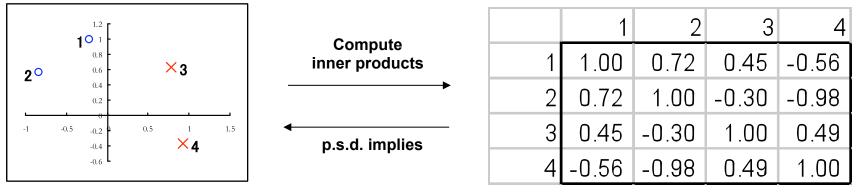
Our work: efficiently propagating known information

Training set expansion Motivation: lack of training examples Expand training sets horizontally Multi-level learning Motivation: hierarchical nature of interaction Expand training sets vertically DDI predictions Expand training sets vertically MRI predictions

reconstruction challenge

<u>Kernels</u>

Kernel: a similarity matrix that is positive semi-definite (p.s.d.)



Objects in an feature space

Similarity matrix

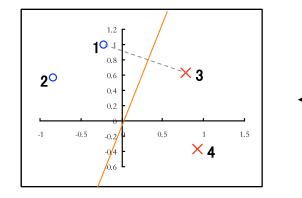
Good for integrating heterogeneous datasets (protein sequences, PSSM, gene expression, ...)

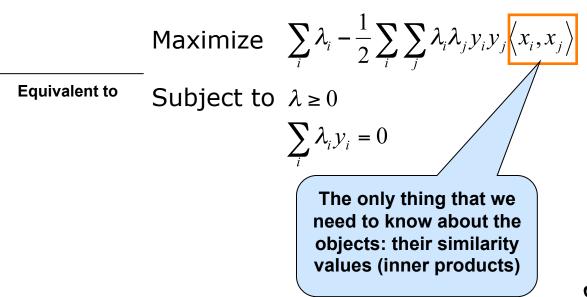
- no need to explicitly place them in a common feature space

Kernel methods

Use the kernel as proxy to work in the feature space

Example: SVM (finding the best separating hyperplane)





Kernel methods for predicting networks: local vs. global modeling

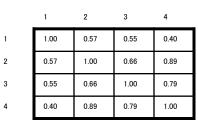
2 3----4 ?

Global modeling: build one model for the whole network

Pairwise kernel: consider object pairs instead of individual objects Problem: O(n²) instances, O(n⁴) kernel elements

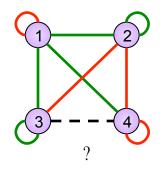
Threshold: 0.7

Direct methods: threshold the kernel to make predictions Problem: One single global model, may not be able to handle subclasses



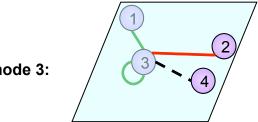
1	2	3	4
1.00	0.57	0.55	0.40
0.57	1.00	0.66	0.89
0.55	0.66	1.00	0.79
0.40	0.89	0.79	1.00

Kernel methods for predicting networks: local vs. global modeling



Local modeling: build one model for each node

Model for node 3:



Problem: insufficient and unevenly distributed training data (what if node 3 has no known interactions at all?)

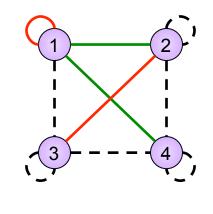
Our work: training set expansion

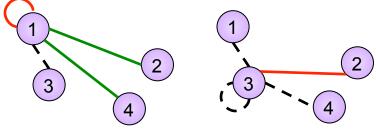
• Goal:

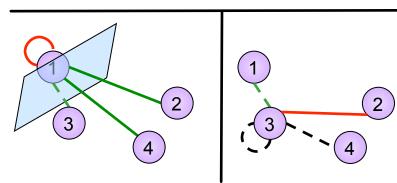
- \Diamond Utilize the flexibility of local modeling
- \Diamond Tackle the problem of insufficient training data
- Idea: generate auxiliary training data
 - \Diamond Prediction propagation
 - \Diamond Kernel initialization

Prediction propagation

- Motivation: some objects have more examples than others
- Our approach:
 - Learn models for objects with more examples first
 - Propagate the most confident predictions as auxiliary examples of other objects

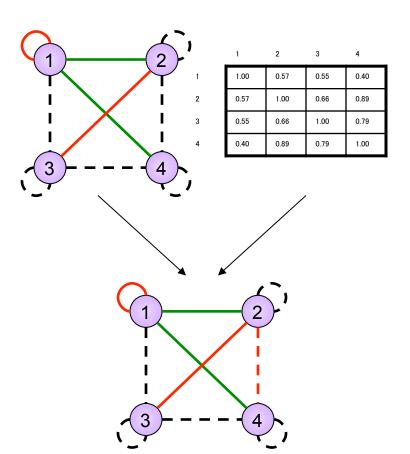






Kernel initialization

- Motivation: what if most objects have very few examples?
- Our approach (inspired by the direct method):
 - Add the most similar pairs in the kernel as positive examples
 - Add the most dissimilar pairs in the kernel as negative examples



<u>Remarks</u>

- Can be used in combination
- Prediction propagation theoretically related to cotraining (Blum and Mitchell, 1998)
 - \Diamond Semi-supervised
 - Similarity with PSI-BLAST
- Algorithm complexity O(nf(n)) of local modeling vs. O(f(n²)) of global modeling

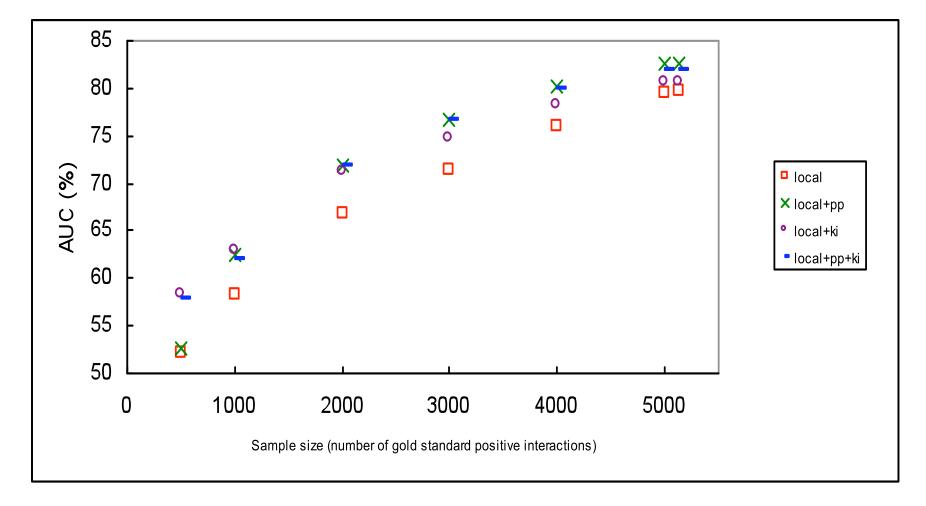
Prediction accuracy (AUC)

	phy	loc	exp-gasch	exp-spellman	y2h-ito	y2h-uetz	tap-gavin	tap-krogan	int
Mode 1									
direct	58.04	66.55	64.61	57.41	51.52	52.13	59.37	61.62	70.91
kCCA	65.80	63.86	68.98	65.10	50.89	50.48	57.56	51.85	80.98
kML	63.87	68.10	69.67	68.99	52.76	53.85	60.86	57.69	73.47
em	71.22	75.14	67.53	64.96	55.90	53.13	63.74	68.20	81.65
local	71.67	71.41	72.66	70.63	67.27	67.27	64.60	67.48	75.65
local+pp	73.89	75.25	77.43	75.35	71.60	71.51	74.62	71.39	83.63
local+ki	71.68	71.42	75.89	70.96	69.40	69.05	70.53	72.03	81.74
local+pp+ki	72.40	75.19	77.41	73.81	70.44	70.57	73.59	72.64	83.59

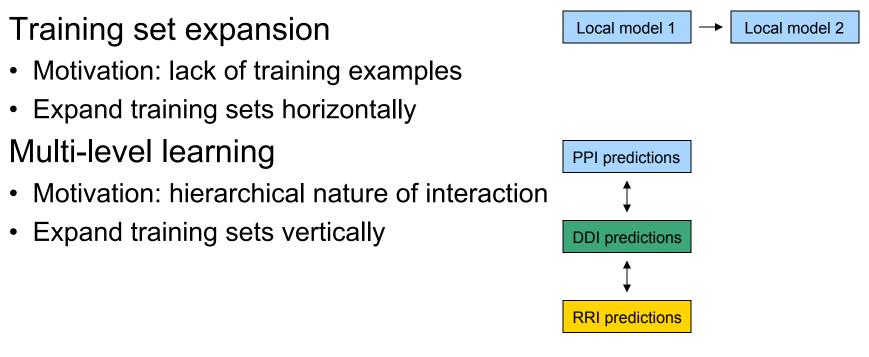
Observations:

- Highest accuracy by training set expansion
- Over fitting of local modeling without training set expansion
- Prediction propagation theoretically related to cotraining (Blum and Mitchell, 1998)
 - ♦ Semi-supervised (Similarity with PSI-BLAST)

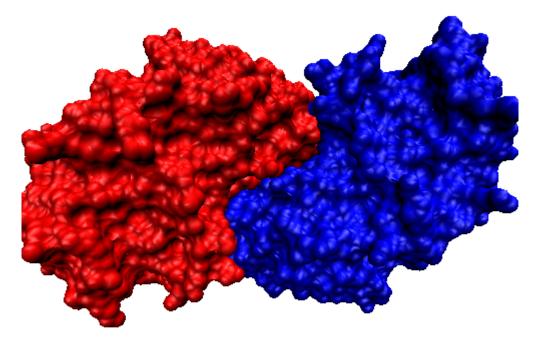
Complementarity of the two methods



From horizontal to vertical



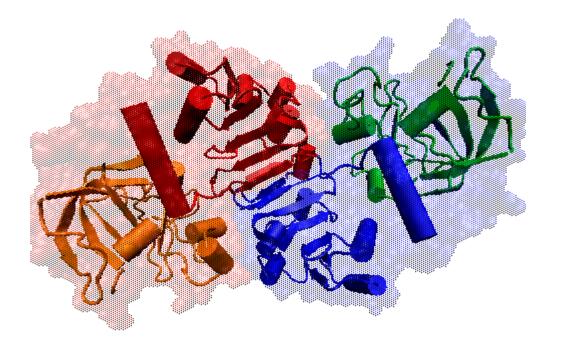
Protein interaction



Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

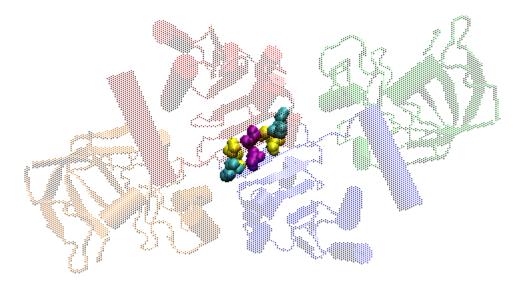
Domain interaction



Pfam domains: PF00107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

Residue interaction

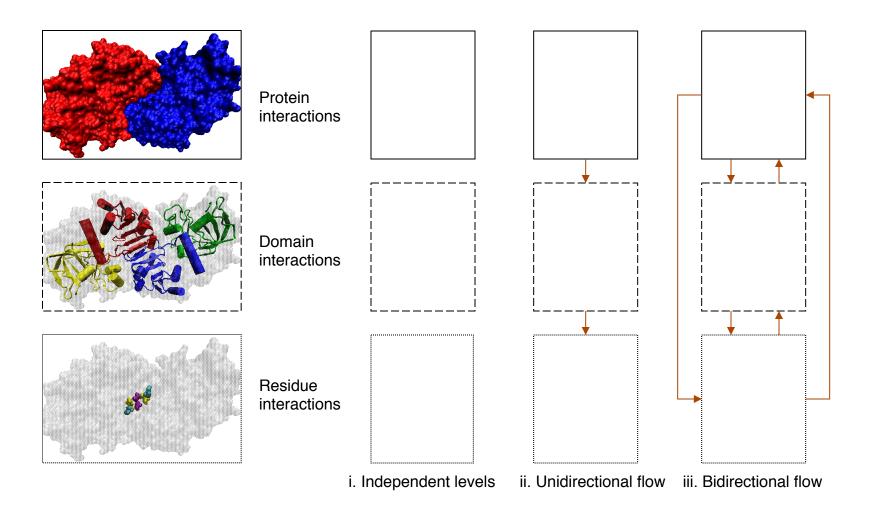


Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

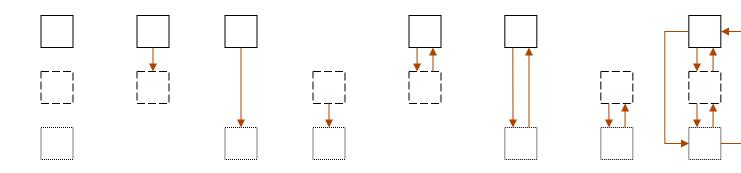
[Yip and Gerstein, BMC Bioinfo. ('09, press)]

Combining the three problems



Empirical results (AUCs)

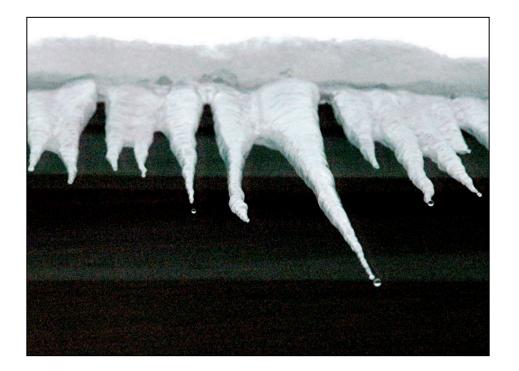
	Ind. levels	Unidirectional flow			Bidirectional flow			
Level		PD	PR	DR	PD	PR	DR	PDR
Proteins	71.68				72.23	72.50		72.82
Domains	53.18	61.51			71.71		68.94	71.20
Residues	57.36		54.89	53.81		72.26	63.16	77.86



- Highest accuracy by bidirectional flow
- Additive effect: 2 vs. 3 levels

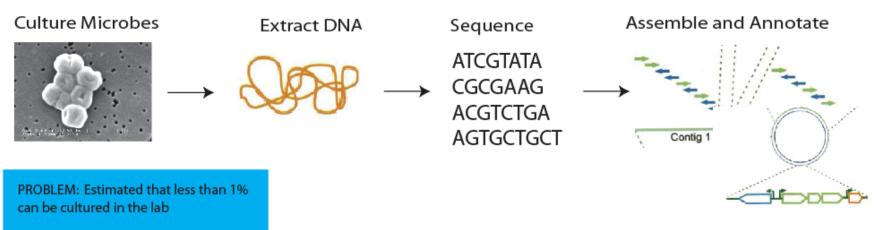
Network Dynamics #2: Environments

How do molecular networks change across environments? What pathways are used more ? Used as a biosensor ?

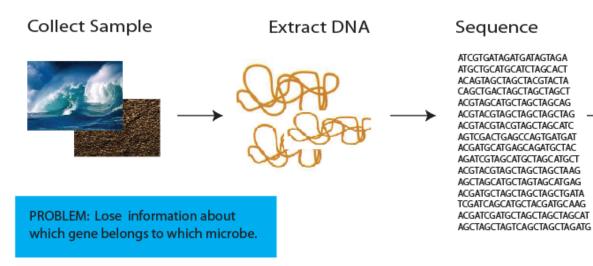


What is metagenomics?

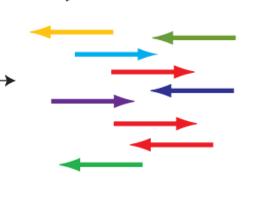
Genomics Approach



Metagenomics Approach



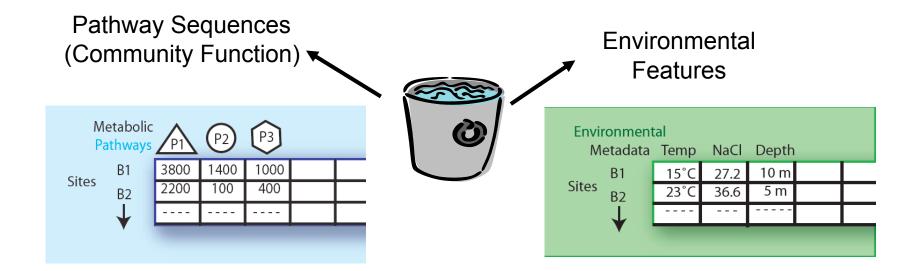
Partially Assemble and Annotate

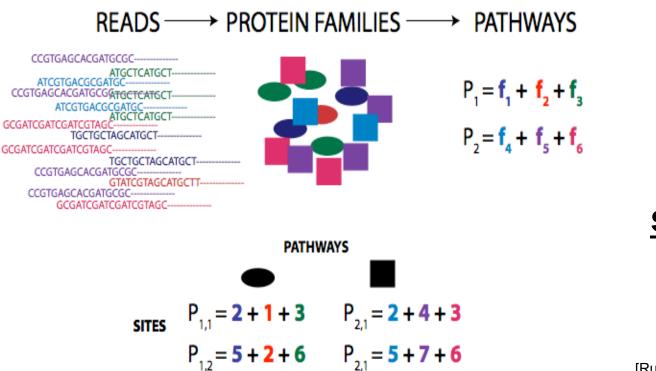


Global Ocean Survey Statistics (GOS)

6.25 GB of data7.7M Reads1 million CPU hoursto process

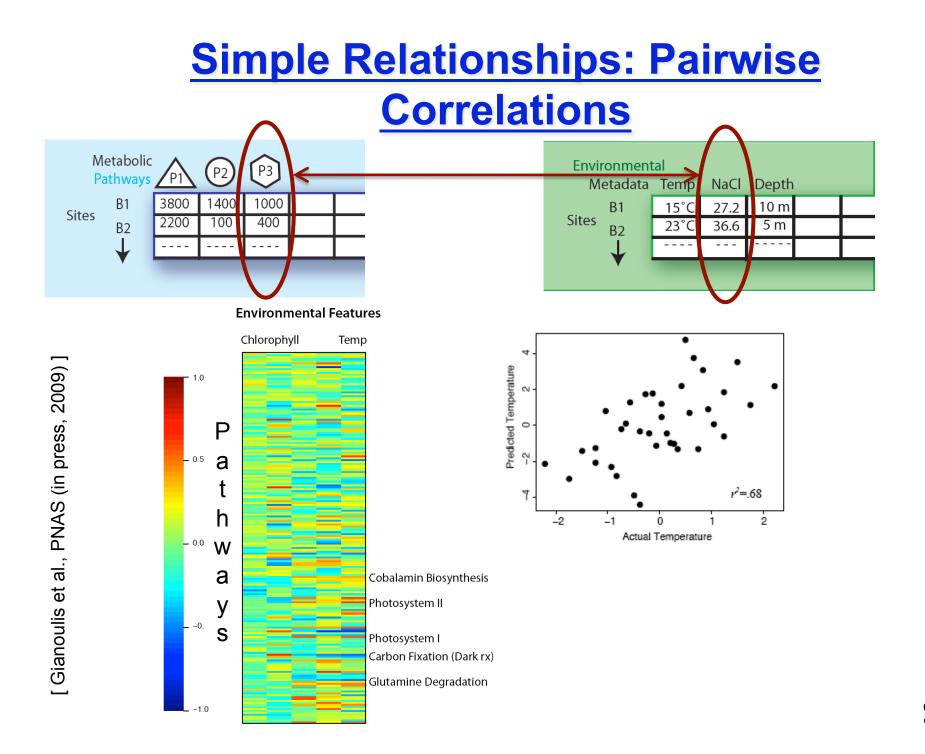
Rusch, et al., PLOS Biology 2007





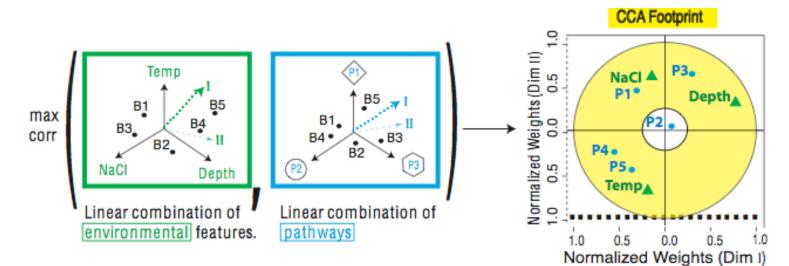
Expressing data as matrices indexed by site, env. var., and pathway usage

[Rusch et. al., (2007) PLOS Biology; Gianoulis et al., PNAS (in press, 2009]



42 - Lectures.GersteinLab.org

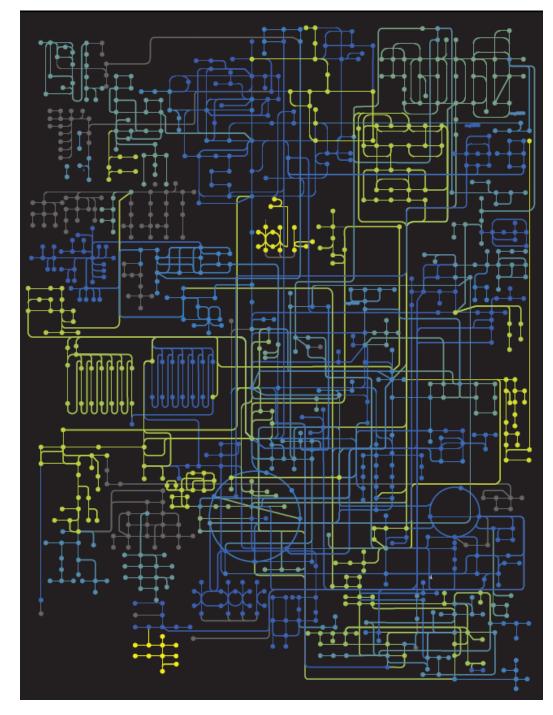
Environmental-Metabolic Space



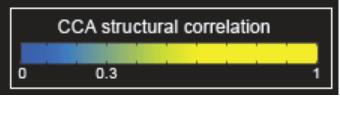
The goal of this technique is to interpret cross-variance matrices We do this by defining a change of basis.

Given
$$X = \{x_1, x_2, ..., x_n\}$$
 and $Y = \{y_1, y_2, ..., y_m\}$

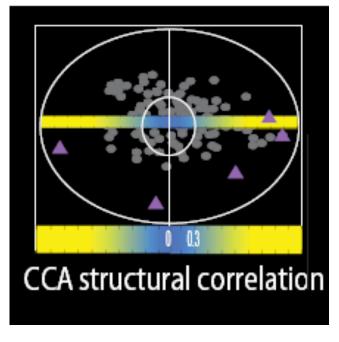
$$C = \sum_{X} \sum_{Y} \sum_{Y,X} \max Corr(U, V) = \frac{a' \sum_{12} b}{\sqrt{a' \sum_{11} a} \sqrt{b' \sum_{22} b}}$$

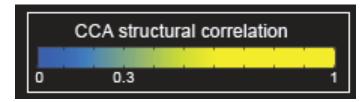


Strength of Pathway co-variation with environment

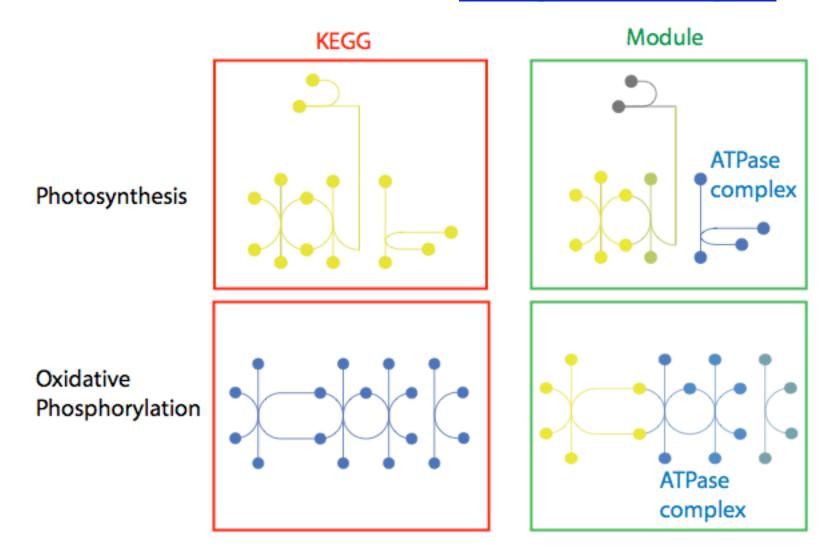


Environmentally Environmentally invariant variant

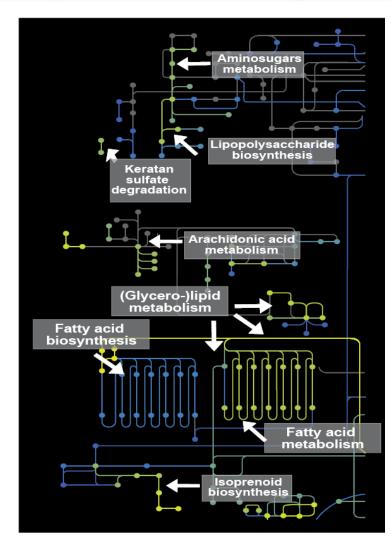


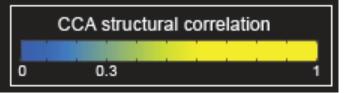


<u>Conclusion #1: energy</u> <u>conversion strategy,</u> <u>temp and depth</u>

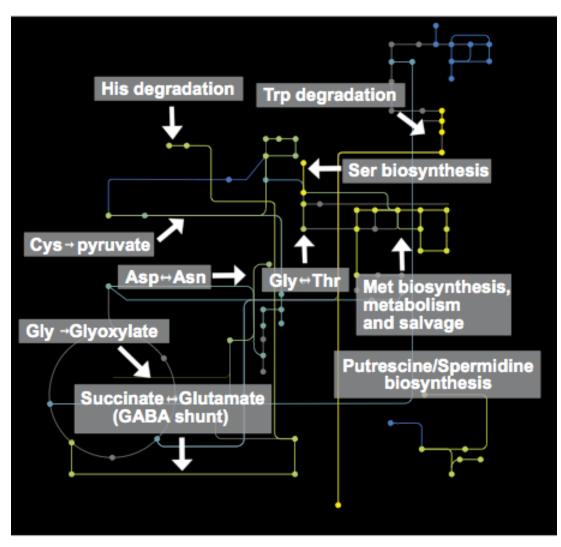


<u>Conclusion #2: Outer Membrane</u> components vary the environment





Conclusion #3: Covariation of AA biosynthesis and Import



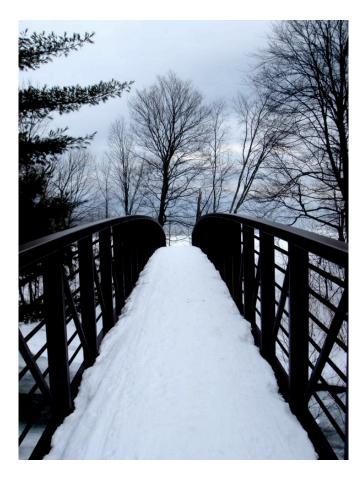
Why is their fluctuation in amino acid metabolism? Is there a feature(s) that underlies those that are environmentally-variant as opposed to those which are not?

Biosensors: Beyond Canaries in a Coal Mine

Outline: Molecular Networks

- Why Networks?
- Predicting Networks (yeast)
 Propagating known information
- Dynamics & Variation of Networks
 - Across environments
 (in prokaryotes)

<u>Conclusions on Networks:</u> <u>Predictions</u>



- Predicting Networks
 - Extrapolating from the Training Set
 - ◊ Principled ways of using known information in the fullest possible fashion
 - Prediction Propagation
 - Kernel Initialization
 - Multi-level learning

<u>Conclusions: Networks Dynamics</u> <u>across Environments</u>

- Developed and adapted techniques to connect quantitative features of environment to metabolism.
- Applied to available aquatic datasets, we identified footprints that were predictive of their environment (potentially could be used as biosensor).
- Strong correlation exists between a community's energy conversion strategies and its environmental parameters (e.g. temperature and chlorophyll).
- Suggest that limiting amounts of cofactor can (partially) explain increased import of amino acids in nutrient-limited conditions.

- an automated web tool

OI (vers. 2 : "TopNet-like Yale Network Analyzer")

Control Panel - Microsoft Internet Explorer		_ & ×	
it <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp			
. • 🕥 - 🖹 💈 🟠 🔎 Search 🤺 Favorites 🕢 🔝 - 🦢 [a - 🛄 🗑		
http://networks.gersteinlab.org:8080/tyna/index.jsp?networkOrder=id&categoryOrder=	<u> </u>	THEORY THEORY	
1			
τ	NA		
Getting started API WSDL Download tYNA Installation			TILLIN
You are logged in as kevin. Logout	View: Simple Ad	Ivanced	
List Owned Silological Inetworks with (Attribute name)			
Workspace manager	Networks in database (<u>upload</u> <u>download</u>)		(7310)
Load an existing network 😨	Creation		CURDS
	ID Name Creator date		
Load 14. Uetz 2000 yeast two 💌	14 Uetz 2000 yeast two hybrid kevin 21-Feb-06 Dele		
Into workspace 0 💌	15 Ito 2001 yeast two hybrid kevin 21-Feb-06 Dele		TAK
Categorized by Nil -	16 Ho 2002 pull down kevin 21-Feb-06 Dele		Disclosure there
	17 Gavin 2002 pull down kevin 21-Feb-06 Dele		Display options: Default colors:
Load	18 Jansen 2003 PIT kevin 21-Feb-06 Dele		Node: blue 🔽 Edge: lightgrey 🔽 Text: white
Current working networks in your workspaces:	19 MIPS yeast PPI kevin 21-Feb-06 Dele		Special coloring: 🤨
Workspace D: statFilter(degrees, geq, 1, value, neighbors=false,	21 BIND yeast data kevin 21-Feb-06 Dele		C None
intersection("Uetz 2000 yeast two hybrid",	22 DIP yeast data kevin 21-Feb-06 Dele		Color gradient: Degree 💽 of Original network 🔽 from green 💽 to red
"Ito 2001 yeast two hybrid"))	23 Kim 2006 structural interaction kevin 21-Feb-06 Dele 24 Han 2004 FYI data kevin 21-Feb-06 Dele		C Color class: Class name: 💌 white
Workspace 1: (empty)			Redraw
Workspace 2: (empty)	25 Luscombe 2004 regulatory Revin 21-Peb-06 Dele	te 🗸	Statistics:
Workspace 3: (empty)	Categories in database (<u>upload</u> <u>download</u>)		Node Film Connected Degrees () Clustering Coefficients Eccentricities () Betweenness ()
			Category Counts Count Counts
Multiple-network analysis	ID <u>Name Creator</u> <u>Creation date</u>		Avg. S.D. Min. Max. Avg. S.D. Min. Max. Avg. S.D. Min. Max. Avg. S.D. Min. Max
		<u> </u>	Whole 276 187 109 1.30 0.74 1 7 0.04 0.19 0.00 1.00 2.51 1.57 1 9 3.60 20.22 0.00 200.1
		internet	

Normal website + Downloaded code (JAVA) + Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006); Similar tools include Cytoscape.org, Idekar, Sander et al]

Acknowledgements

Networks.GersteinLab.org

Job opportunities currently

for postdocs & students

K Yip T Gianoulis H Yu

M Seringhaus M Snyder A Paccanaro P Kim P Cayting P Patel P Bork J Raes

More Information on this Talk

TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION:

```
Joint Statistical Meetings 2009, Washington, DC, 2009.08.02,
14:00-14:20; [I:JSM] (Very short networks talk, just with tse*,
multilevel*, and metagenomics*. Justs fits into 19' w. 1 questions
(with some skipping of slides). PPT works on mac & PC and has many
photos.)
```

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each topic abbrev. which is starred is actually a papers "ID" on the site. For instance,

```
the topic pubnet* can be looked up at
http://papers.gersteinlab.org/papers/pubnet )
```

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as **kwpotppt**, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .