Annotating
Non-coding Regions
of the Human Genome

RECOMB Satellite Meeting
on Regulatory Genomics
Cambridge, MA
2008.10.31, 18:45-19:15

Mark B Gerstein
Yale (Comp. Bio. & Bioinformatics)

Slides from
Lectures.GersteinLab.org




~ & ‘human:
P gernome

2001: Most of the genome is not coding (only ~1.2% exon).
It consists of elements such as repeats, regulatory regions,
non-coding RNAs, origins of replication, pseudogenes,

segmental duplications....What do these elements do? How should

[IHGSC, Nature 409, 2001] 3
they be annOtated? [Venter et al. Science 29, 2001] ¢
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ENCODE Special Issue
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2007 : Pilot results from ENCODE Consortlum on

decoding what the bases do

- 1% of Genome (30 Mb in 44 regions)
- Tiling Arrays to assay Transcription & Binding
- Multi-organism sequencing and alignment

- Careful Annotation
- Variation Data

[IHGSC, Nature 409, 2001
[ENCODE Consortium, Nature 447, 2007

]
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How might we

annotate a

human text

I_T

?

Color is
Function

Lines are

Similarity

[B Hayes,

Am. Sci.

(Jul.- Aug.
'06)]

IF YOU WANT TO BE a thorough-
o eeeeep0ING. WALl raveler. von nesd fa...

learn 6,912 ways to say “Where is the
t:::i.l_e‘t.,. plea-se?” That's the number of
peoples of planet Earth, according to
Ethnologue.com.

If you want to be the complete poly-
glot| programmer, you also have quite
a challenge atiead of you, leaming all
the ways tosay;

§ mNWhﬂihmm\Iﬁ\:\\‘E\Muhm‘mﬂum‘, WI::KI]‘.“} H E

ooooooooooooooooooooooooo O XK N)

[T.liis one 1s in'C) A Catalog mainfained
by Bill Kinnersley of the University of

Kansas lists about 2,500 programming

languages. Another survey, compited
by Diarmuid Piggott, puts the total
even higher, at more than 8,500. And
keep in mind that whereas human lan-
guages have had millennia to evolve
and diversify, all the computer languag-
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we've
been inventing one language a week,
on average, ever since Fortran.

For ethnologists, linguistic diversity
is a cultural resource to be nurtured
and preserved, much like biodiversity.
All human languages are valuable; the

Brian Hayes

Every|programmer

i knows there is one

trud programming
language. A new one

every week

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There arelpmgrarmners |:rf my ac-
quaintance who will dispute that last
statermnent. I expect to hear from them.
They will argue—szealously, ardently,
vehemently—that we have indeed
found the right|programming|lan-
guage, and for me o claim otherwise
is willful ignorance. The one true lan-
guage may not yet be perfect, they'll
concede, but it's built on a sound foun-
dation and solves the main problems,
and now we should all work together
to refine and improve it. The catch, of
course, is that each of these friends will
favor a different language. [t's Lisp,

he Semicolon Wars |

cide which end of a boiled egg to crack.
This famous tempest in an egg cup was
replayved 250 years later by designers of
computer hardware and communica-
tions protocols. When a block of data is
stored or transmitted, either the least-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if everyone made the same
choice. But that’s not what has hap-
pened, and so quite a lot of hardware
and software is needed just to swap
ends at boundaries between systems.
This modern echo of Swift's Endian
wars was first pointed out by Danny
Cohen of the University of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace.”
The memo, subsequently published
in Computer, was widely read and ad-
mired; the plea for peace was ignored.
I—
nother femﬁwgeﬁ-rgmten,
think, but never settled by truce GI'I
treaty—focused on the semicolon. In
Blgol apd.Pascalunrosramasatepanis
have to be separated by semicolons. For
example, inx:=0; y:=x+1; z:=2the
semicolons tell the compiler where one
statement ends and the next begins. C
programs are also peppered with semi-



Overview of the Process of
Annotation of non-coding Regions

e Basic Inputs

1. Doing large-scale similarity comparison, looking for repeated
or deleted regions

2. Determining experimental signals for biochemical activity
(e.g. transcription) across each base of genome

1. Finding large repeated or deleted blocks (e.g. CNVs) as a
function of degree of similarity

1. within reference human genome
2. within human population
3. between related organisms (e.g. mouse)

2. Finding smaller "exon-level" similarities (e.g. pseudogenes)

7
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Overview Of  Determining experimental
signals for biochemical

Annotation activity (e.g. transcription)
Process across each base of genome

¢ Development of Sequence (and
Array) Technology

 Normalizing & Scoring Signal,
Correcting Artifacts, Segmenting to
create Small Annotation Blocks

¢ Output of Production Pipelines and
Surveying a Single Type of
Annotation on a Large-scale
e Clustering Small Blocks into Larger

Ones, Surveying
¢ Integrated Analysis Connecting

| i & w—
L__LI ] E | Different Types of Annotation
’I

n [ e Building networks and beyond

7 Lectures.GeisteinkLab.org (c) 2007
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Signal Processing:
Normalizing Signal and
Finding Initial Annotation

Blocks ("Hits")
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Representative Signal
from Chip-Seqg

STAT1 ChiP-sequencing signal profile map on human chromosome 22 16 uniquely mapped sequence reads and
their directional extension in a tag cluster
| 20000000 | 25000000 | 30000000 | 35000000 | 40000000 | 45000000 | .
97 . 4
1 g l.ld..uumh |
Overlap
identification
48650000 | 4BTO0000 | 48750000 | Overlap profile
12 Lgo
Chr. 22
el el LY [ln_“l_u_lhlm B ARTAT | (NS L 1

[Robertson et al., Nat. Meth. ('07); Zhang et al. PLOS Comp. Bio. (in revision, '08)]
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Genome / Genomic region

R SN [— Correcting
Chip-seq Signal by
Simulating a Non-
1L randomy piace binding sies uniform Genomic
Background

mmu nd weight distribution
: ﬂ Add sampling weights to backgroumnd

B ' — T N B . We developed in silico ChIP
Inter-site weight distribution SequenCing1 a CompUtati0na|
"L A samping wagnts to incing sies method to simulate the

experimental outcome.

|””| Intra-site weight profile
Ll |I...

\ﬂ Redistribute sampling weighls in binding sites

[ I ' & 1 &= &= n 1

U Place sequence tags

['-
14 (c) Mark Gerstein, 2002, )
Yale, bioinfo.mbb.yale.edu [Zhang et al. PLoS Comp Bio. ('08)]
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Frequency

Tag count and

Genomic identity  ils distribution

Frequency

I':I6

— Actual data, STAT1 stimutated
— Actual data, STAT1 unstimulated
= Simutation, uniform bkgd only
—— Simutation, varying bkgd only

ChlP-sequencing simulation

o
o - L.\
\ "'4.‘
\ R
AR
o I [ W
L
T I | I I T
1 § 0 50 100 500
Tag count
o
=
= Ny — Aoty data
—— Simulatien, unifarm bkgd, uniform sites
—— Simulatien, varying bkgd, uniform sites
—— Simulation, uniform bikgd, varying sites
Simulation, varying bkgd, varying siles
- \
2 5
¥
™
2
=l
| | | | |
1 5 10 50 100 00 1000
F— Low —+ Medium + High —+ Uitra-high
[ - Poti-lw — —+ - Right 1ail s
FBackground +——————+———————  Bnding siles |
Background
T DINing aile

Contrary to the common belief, the
background is mildly fluctuating and
contains some ‘hot’ spots.

Simple uniform background model does
not count for all the variation in the
background and thus leads to a serious
underestimation of the background noise.

Our study demonstrates that both the
genomic background of ChIP and binding
sites are not uniform.

Simulated distributions segments the
actual distribution into four sections.

[Zhang et al. PLoS Comp Bio. ('08)]
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ChIP-Seq vs Input DNA Control

: L | Pol Il ChIP-Seq
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Interferon-Y stimulated Input DNA
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Mappable Bases (1Kb)

XPNPEP3 RBX1 EP300
G L

1l 21 1AA3A 058 Aok ) A8 AEN S0 1, 900 53 AE.FI08 U 7 B BEPEL50 Lt ) BEAS5,800 18,830,568 1R, P 8,800, 84e

L L) 185, 138 Bl B LABAEA A% B B 5,10 058

A fH—— B
SLC25A17 ST13

[Rozowsky et al. (submitted)]
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Threshold

PeakSeq: Scoring

Relative to Controls

| Mabpability-ﬁﬂaﬁ

111—1’1‘47?'5;51 I - = | . TR
] | HEH— 1 A
L CELSR1 CERK | . .
Filter for Potential
Targets based on
ChIP-Seq Sample Mappa_blllty
Input DNA
N Scale Input
Relative to
ChlP
g
[Rozowsky et al. E
(submitted)] % Stope = 1.24 4
R2=0n1 Score
Input DNA Relative to

Bionomial
‘ IH ‘ ‘ ’ Enriched Sites 4/— Expectation

17 Lectures.GeisteinLab.org ()



Scored results
consistent with
simulation

Actual peaks at tail of

power-law graph

[Rozowsky et al. (submitted)]

10000

1000

100

MNumber of Targets

10

—Unenriched STAT1 Targets

Enriched STAT1 Targets

10

100

Peak Tag Count

1000

10000




Punctate Regions vs Broad

Regions

20 Lectures.GeisteinLab.org (o)



Representative Signal from aCGH with CNVs & Breakpoints

Chromosome 22 {_

High Resolution Array

Comparative Genomic g ]

Hybridization (aCGH) g _

Calling Copy Number R
Variants (CNVs) between o - Patien 99-199
Breakpoints BT Gy

Nimblegen/MAS Technology et

Isothermal Arrays Covering o o
Chromosome 22 Jhesal - Patient 97-237 |
Resolution ~1 kb il | '

Urban et al. (2006) PNAS

21 Lectures.GeisteinLab.org (o)



Obs. Signal (counts, array intensity)

B Mean-shift-based (MSB)
- Ye | X Segmentation

’ Initial data point
Updated value after one cycle of iteration . 5
d d g (0L Y1) = X"

'y .

miG(y,) e MGy, )mean shift vector

.. ’ - '_.v_ 'ir_
) . . . ) i) i
[ - ; -
@ SR ' 0Ly

Final converged value

|
Position (S)

(xi) Observed depth of coverage counts (or array signal) as samples from PDF
(m) Kernel-based approach to estimate local gradient of PDF
(yc) Iteratively follow grad to determine local modes

Not Model-based (e.g. like HMM)
with global optimization, distr. assumption & parms. (e.g. num. of segments).
Achieves discontinuity-preserving smoothing
[Wang et al. Gen. Res (in press, '08)]
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Representative Result Showing
Segmentation Based on
Depth of Coverage

MSB is not model
based so can be
applied equally well to
pseudo-signal from
coverage depth as to

CGH arrays ?7?

NA11995 (seq. by Sanger, MAQ mapping)
chr 21 (46162500 to 46164711) [Wang et al. Gen. Res (in press, '08)]
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photo

Annotating a single type of signal

on alarge-scale:
Clustering and Characterizing
Binding Sites (TRES)

24 Lectures.GeisteinLab.org (o)



Clustering Binding Sites at ~50kb

resolution

MESO-GENOMIC SCALE

MACRO-GENOMIC SCALE (TREs distribution MICRO-GENOMIC SCALE
analysis) (Promoter assay and

(Chromosome analysis) ‘ TSS validation)

Transcriptional
regulatory elements
(transcription factor binding sites
and histone modifications)

Chromatin structure

[Zhang et al. (2007) Gen. Res.]

25 Lectures.GeisteinLab.org (o)



Clustering Binding Sites at ~50kb

resolution

MESO-GENOMIC SCALE

(TREs distribution
analysis)

| ‘ |
__,])\)1/—

Transcriptional
regulatory elements
(transcription factor binding sites
and histone modifications)

[Zhang et al. (2007) Gen. Res.]
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(CFTRI ENmOO1 - —fe——t——r-rett b et et
L an d S C ap e Of [Interleukin] ENm002 1

[Apo] ENm003 L\ttt
ENCQD_E (Chr22) ENmO04 ——rhrfirrrrrkbtr— -t i L -
TranscriptionNal  ioveenmons k- b shrdink -t
Requlatory [EReX ] £ 205 it f et
L e L SR A
Elements [u-globin] ENm008 GhLUHLIM _L——Bb Lt L
: [#-globin] ENmO09 M — M -
.Analyzed 105 IIStS Of [HOXA] ENmO10 Tt ————— Zhang et al. (2007) Gen. Res.
transcriptional s = o R
regulatory elements  roeaenmon — b
in the enCOde [7921.13] ENmO13 |1_I|'|'|:lI III IIII I:I IHIIIIII L L AR B L AR III IIIII“I :
reglons [7q31.33] ENm014 4 ||| TT ||:'i|||: I| L] ||I|| Iu gl : l1I|l: lI T ll
29 transcription EN11 e ENA2 M ENS b
factors’ 9O cell |ineS, ENr112 11— ENM22 et ENr32 it rodfrrt et
! 1 ] = T [ B ™ r e r it
2 time points e o e
ORNA Pol2 R |
0 Histone modifications such NI — b b | ! N2 i —ar——rr EN231 §rridtHierhm
as AC & Me ENr212 " 1| ENr222 , “I.II] ”l |,HI - lll ]]ll ENr232 THMHMN—W
¢ Core promoters EN213 — L L4 EN223 X enr233 —H— e —H—
O Promoter proximal
elements ENr311 H I|” lIIIILiIIIIII T I ||I'ITI' ENr321 -lLirfrrﬂm'“n'rrH"—n—n‘nr ENr331 mh'ﬂHﬂH_Fﬂl_%_ﬂ_'l'lﬂ'uc'
0 Others such as enhancers, ENg1z Ll eNe22 Lty ENS32 bk
silencers, insulators, & PP Ena2s b ENG33 (] i L
response elements
ENr324 —— H T ti‘l h &I T ENr334 HTH"'HH’H"T’I’WFF‘M‘W

| | | |
1 500000 1000000 1500000 bp



Collect Total Hits for Each Factor in ~6000 Bins of 10 to 100 kb

and Compare to Random Control

Nucleotide positions in the encope regions

E 1 ~30 Mb
g 1 m—
T Ol I SRR SRS =
il Wssieirsihiivicdiessiriei i ilaaiinr s s e s i lis oar s i i vinsalpes v s od i i
&

@

-9_ ........................................................................
-: 1
ﬂ.? ’. ‘ 000000111111000000111111 |
—= 105 :

O

Data matrix

Sliding-window
transformation

Genomic bins in the ENcopE regions
1 5996

In

105

ChIP-chip expt. tracks

Count matrix A
Zhang et al. (2007) Gen. Res.

Trackd ——t — @ —
Track 2 —-— — —1—«

! | Binary coding
0011111110000011110000000001 1110011110000
Track1 — —— — =

Tl'aCk 2 CIOUUOOFI 1111000000000111100000000001111110

Track 1 —— — — ——-
Track 2 —-— — —-—

Track 1" —— = — —
Track 2’ —_—— F—

28 Lectures.GeisteinLab.org (o)



Non-random distribution of TRES

TREs are not evenly
distributed throughout
the encode regions (P <
2.2x10716),

The actual TRE

distribution is power-law.

The null distribution is
‘Poissonesque.’

Many genomic
subregions with extreme
numbers of TRESs.

Zhang et al. (2007) Gen. Res.

Number of subregions

60

50

40

30

20

10

Actual TRE distribution

-~ Random TRE distribution
130-kb subregions
140-kb subregions
150-Kb subregions
160-kb subregions

Number of TREs in a subregion
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Local TRE enrichment and depletion:

Annotation

of Desserts and Forests

e Hundreds of TRE
‘forests’ and
‘deserts’ are
identified Iin
ENCODE regions.

* The entirety of endl
on chromosome 11
Is covered by TRE
Islands.

 Some of islands are
located in the
Intergenic regions in
the genome.

Cromosome 11 | ee3s5000 | 64360000 | e4365000 | 64370000 | G437so00 | s4ssooco |

64335000 |

64390000 |

64305000 | 64400000 | 64405000

TRE Islands I = [ ] B | B

BAFi155 HaKdmei Il HIKdmed Il Hiac I
Hik4maz Il Hiac I Haac Bl Hdac Il
Hatamet Il Hiao B H3K4me2 I HSWdme? I
Hiac Il HIKsma: I c-Mivc I Hiac Il
HIK4me? I H3Keme3 Il Hdac BN
HaK4ma Haac Il
Hiac IR H3Kdme2 Il
Hakdmat Il
Hlac
Hakdmea1 Il
Hak4me1 I

Individual TREs

TAF1

Hia: Il
Haac Il

Hikame' I

Hikdmes Il
HiK4mal Il

H3ac Il
Hiac Il

H3ac [l H3ac
Hiac Il
Hia: Il TAF1
HiK4me2 I S
HIKemas Il
Haxamed Il Hiac I
MaKdmei [l H3Kdme? N
Hixdmez I -
Héac I
c-Myc Il
HaKdmas Il
HaK4ma1 IR
HaKsme! Il
HaKémad Il
HaKdme? Il

H3ac Il
Hiac

Hakame! Bl
Hik<mes Il
c-htyc Il

KNown Genes I il s o]

e
-y

COC42BPG

Cromosome 13 20700000 | 20750000 | 29800000 |

TRE Islands | ]
1

H3Kdmez |
1 Pedll
| H3®4ma1
1 Haxame1
| HaKama2
HaKkamat |

Individual TREs STAT1
H3Kdmen |
Hik4mat |

HIKdman |

H3K4mat |

]

a

Hiacl P300|
HIKdmed |
HaKsmaz |
Paog |
Hakamed |
H3kame |
Haac il
HiKame3 |l
HiKame2 |
E2F1 |

O

HIxamez |
Hakdme! |
H3K4mal |
HaK4me2 |
H3Kamat |

Myl

HaKdmen ||
rdac |
HiKemaz |
HIK&maz |

HaKdme? |

HiKame3 |
HIK4maz |

Hikamez B HaKdmat |
Hiaz: |
TAF1 |
Peill |

CEBPe |
H3Kemad |
HaKkame1 |

Haac I
H3K4ma2 |
HaKame1 |

L
=

Known Genes I WATRALT g |

HaKama1 |

29850000

=] ]

Haac |
e-Myc

Haxamed |

Hixdmad |

HaKdme |
HisH4 |
HiKdmez |
HaKdme3 |
HiKdmat |

Haxamez |
H3sAmed |

HaK4mea |
HaKamaz |
Hakdme? |

H3Kk4meaz |
H3Kamad |

Haae |

| 2as00000 |

o ()
1]

TAF1 |
Hiacll

H3ac | Hiac I
AN | Haac I
Haac H3K4me |
HIK4maa |
Hiac| HaKime2 B
ety |
TAF1 |
Poml |
H3ae |
HIK4ma3 |
Hiacl
Palil |
HaK4ma? |
Palll |
HisH4 I
Higha |
Hixameat |
HaK4mat |
H3K4me2 B
HIKamas |

HaKamea1 I

c-Myc
HIK4me3 |
Hakdma |
HaK4mat |

HMGET
BXB4T2ET

Zhang et al. (2007) Gen. Res.
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Principal component V5
2
|

< _]
!
Senquence nonspecific factors .flf
UIT' - Sequence specific factors f
BAF155 ! BAF170
| | I I
-6 -4 -2 0

Principal component V,

Results

of Biplot

Zhang et al. (2007)
Gen. Res.

Principal component V4

 Biplot groups TFs into sequence-specific and
sequence-nonspecific clusters.
¢ c-Myc may behave more like a sequence-nonspecific TF.

¢ H3K27me3 functions in a transcriptional regulatory process in a
rather sequence-specific manner.

» Genomic Bins are associated with different TFs and in

this fashion each bin is "annotated" by closest TF
cluster

33 Lectures.GeisteinLab.org (o)



TRE analysis on the micro-
genomic scale

MESO-GENOMIC SCALE

MACRO-GENOMIC SCALE (TREs distribution MICRO-GENOMIC SCALE
) analysis) (Promoter assay and
(Chromosome anaIySIS} TSS Va"daﬁDl"‘l)

D @ 0 Transcriptional
regulatory elements
(transcription factor binding sites
and histone modifications)

Chromatin structure

[Zhang et al. (2007) Gen. Res.]
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TRE analysis on the micro-
genomic scale

MICRO-GENOMIC SCALE

(Promoter assay and
TSS validation)

-"'-N} G@ "?E:
To Moy
Sg 'er

35 Lectures.GeisteinLab.org (o)



Traditional motif
learners (e.g.

consensus sequences,

profile methods, and
HMMs) only use
positive information
ChIP-chip & Chip-seq
give vast amount of
negative information
(regions not bound)
Explicitly use this in
constructing classifier
that refines known
positive motif seeds

Use sequence of
Alternating Decision
Trees (ADTboost),
which allow explicit
inter-positional
correlations between
nucleotide positions

Using Binding Site

Regions Found by

ChIP-chip to refine

motifs: BoCaTFBS

Binding sites

AACAGGAATA
ATCAAGACAT
TTCACGAATG

ACGTCGATAC

Non-binding sites

GAGATGACAA
CTAATCGAGC
TTCCTCGATG

GATGTGTTCT

. e
- g
-
~

Position1 = A

Position3 = C

Position5 =T

Position7 = A

ﬁ%&%

Position4 = A

Position6 = G

[Wang et al., GenomeBiology ('06)]

44 Lectures.GeisteinLab.org (o)



Good performance compared to traditional motif-finders

but large negative set requires training and detection

cascade for efficiency and balance

95.00%

85.00%

75.00%

65.00%

Sensitivity (true positive rate)

55.00%
45.00% 1
35.00% - ]' {
250%  3.00%  350%  4.00% 450% 5.00% 550%  6.00%

1-specificity (false positive rate)

[Wang et al., GenomeBiology ('06)]
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|
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R4 T
1
Consensus
) n 4 Screen ihe negalive fraining =ed N,
Centroid P& N N'is false True negativesCil) is got the resulting talse positives N'
. positives of Cfi) “oul” in the next round
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Annotating a single type of

sighal on a large-scale:
Clustering and Classifying Un-

annotated Transcription
(TARS)

.GeisteinLab.org (o)



Summary of ARs

|
ob AR set 1 EE within all
! | chromosomes
/' e AR count for
iz segments of a
""""" chromosome

L | i y AR list for a
TAR sets EAR sets TR chromosome

ah' i =

Search by Pre-defined Detail about a selected
AR, including
e S iont | overlapping ARs from
other sets
[
i B ___DART ARC Home Custom Files
owe g il S =i = i
AR Comparer Tool 37 e e B> |
UCSC Genome Browser = Mt %] _:.—a-_"::::._.'...'? = THT

DART: Database & Tools "‘gmu
- Interfaces with UCSC = Esmem | —C
- Tools use Ensembl API | e s

Rozowsky et al. Genome Research (2007)
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Set of All TARS

Exonic TARs Novel TARs Pseudo TARs

Set of Novel TARs

S1A Filter Novel TARs

Intronic Intergenic ESTs for Unusual Sequence Peculiar TARs
Composition

T BRRRE

 Proximal’ | Proximal | | Distal | S1B Filter Novel TARs

for Cross-Hybridization Cross-Hyb TARs
! EIRIERIE

DA RT S2 Assign Novel TARs to

Known Genes using Gene Assoc. TARs
Expression Profiles

Classification 47 PR

S3A Clyster into N(_)vel Tra_nscribed Novel EP Loci
S te m Loci using Expression Profiles (EP) | —
YS T EEGEE

S3B Cluster into Novel Transcribed
Loci using Phylogenic Profiles (PP)

overr Lod |
T EIIERIE

Rozowsky et al. Gen. Res. (2007) Singlet or Ambiguous TARs

— Novel PP Loci




Production Integrated

More Developed Annotation: Clustering and

Classifying Blocks of Un-annotated

Transcription into larger units

Assignment of novel TARs to known gene loci

" n
2 2 81 o o [ ] i}
= b=
o s, @ @ . ®
o o
o c 83 ° ® . °
o 28
= e :
o o - :
2 g Sioe e [ .
o
B Exon Assigned Novel TAR

Rozowsky et al. Gen. Res. (2007)

Unassigned Novel TAR
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M Exonic
M Pseudogenes M Exonic TARs
1 . 8 M b B Unannotated Regions M Pseudogene TARs

3,006 |ntr0nIC ¥ Unannotated TARs
145 Kb Proximal

195

ENCODE Regions (30 Mb) Locations of TARs

Of the approx 7,000 Novel TARs
e 0955 are assigned to known genes
« 1,463 are clustered into ~200 Novel Loci

*DART Classification has been experimentally validated
with some small scale experiments

¢ RT-PCR & Sequencing

¢ 18/46 (39%) confirmed by RT-PCR

¢ 4/5 Sequenced Products Map uniquely to correct genomic region

Rozowsky et al. Genome Research (2007)
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Example predicted
structured RNAs (using RNAZ)

[>700 candidate structured RNAs
predicted in 1% of the reference
genome]

Overlap of predicted structured RNAs with
the union of TARs/Transfrags and the
"moderate" set of sequence-constrained
elements

Constrained elements

Stefan Washietl, Jakob Pedersen, Jan
Korbel et al. (2007) Genome Res 17:852-
864
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Analyzing Repeated
Blocks In the Genome

(SDs & CNVs)




080907_SD_CNV_Slides_MBG_CEGS_PMK

SEGMENTAL DUPLCATIONS AND COPY NUMBER VARIANTS ARE
RELATED PHENOMENA AND HAVE BEEN CREATED BY SEVERAL
DIFFERENT MECHANISMS

Intra-species variation Fixed mutations
(differences to other species)

m Eixation T [ ]
- - [ ] [ ]
- ee— ' 1 [ ]
- 00— [ ] [ ]
[ ] [ ] [ ] [ ]
Copy Number Variants (CNV) Segmental Duplications (SD)
NAHR 8 NHEJ
- (Non-allelic homologous P (Non-homolo d
—_ i i ] Jous-ent-
recombination) #,0,%) joining)
! Flanki t @]
arpl\I IT.% Erepea by S NO (flanking) repeats.
. . . (e.9- Alu, ) = In some cases <4bp
e .-*;E microhomologies
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PERFORM LARGE SCALE CORRELATION ANALYSIS TO DETECT REPEAT
SIGNATURES OF SDs AND CNVs

If exact CNV breakpoints are
known, we can calculate the
enrichment of repeat
elements relative to the
genome or relative to the local
environment

Exact match

Local environment

...ATCAAGG

CCGGAA...

&

@

@

Survey a range of genomic
features

Count the number of
features in each genomic
bin (100kb)

Calculate correlations /
enrichments using robust
stats

Genomic
bin

N

O
<

]
=
| ==

N N = R

-

1

N = O O

o = O o

o N O =

- O O ©O
QO O = O
- Qo = QO

| X

Alu

[Kim et al. Gen. Res. (in press, '08), arxiv.org/abs/0709.4200v1 ]
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SDs ARE CORRELATED WITH ALUS AND OTHER SDs

/

-

Alu association with SDs by age

0.14

0.14

013 g1,
0.09 0.08
90-92% 92-94% 94-96% 96-98% 98-99% >99%
107 \D

Q

(@]

2

o

[&]

O

10° 10" 10° 10° 10°

Number of SDs in Genomic Bin

* The co-localization of Alu
elements with SDs is highly
significant.

* Older SDs have a much
higher association with Alus
than younger SDs.

e SDs can mediate NAHR and
lead to the formation of
CNVs

® Such mechanisms
(“preferential attachment”)
are well studied in physics
and should leads a very
skewed (“power-law”)
distribution of SDs.

*Hotspots

[Kim et al. Gen. Res. (in press, '08), arxiv.org/abs/0709.4200v1 ]
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ASSOCIATIONS ARE DIFFERENT FOR SDs AND CNVs

CNVs ARE LESS
. . ASSOCIATED WITH
SD association with repeats SDs THAN THE
GENERAL SD TREND

0.27 0.21 CNV
0.094 Association
0.07 .
| | | | with SDs
Microsatellite Pseudogenes LINE 0.31

--

.. . 011
CNV association with repeats
0.0739 0.0466 0.048
0.0006 | | | >09% SDs*  CNVs
Microsatellite Pseudogenes LINE

--

[Kim et al. Gen. Res. (in press, '08), arxiv.org/abs/0709.4200v1 ] -
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AFTER THE ALU BURST, THE

NAHR IMPORTANCE OF ALU
ELEMENTS FOR GENOME
REARRANGEMENT
DECLINED RAPIDLY
NHEJ
CNVs H; hYounlgD %) SDs ] OIdID % * About 40 million years ago
igh seq-ID (% ow seq-ID (% .
. anseai a there was a burstin -
Fixation Aging (~40Mya) retrotransposon activity
............................................... « The majority of Alu elements
L e stem from that time
0.16] e
o.14l Eviaal e This, in turn, led to rapid
s 012 / ~so | genome rearrangement via
S o A NAHR
Soos ’ * The resulting SDs, could
g o0e | N ’ create more SDs, but with Alu
& 0.04 N ‘ activity decaying, their
ooz . N creation slowed
00 . 1:E.'I 20 o BIU' - 40 b ’
Percent divergence

Alu Burst (40 MYA) [Kim et al. Gen. Res. (in press, '08), arxiv.org/abs/0709.4200v1 ]
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Overview of the Process of

Intergenic Annotation

Basic Inputs

1. Doing large-scale similarity comparison,
looking for repeated or deleted regions

2. Determining experimental signals for
biochemical activity (e.g. transcription)
across each base of genome

Results of Analyzing Similarity
Comparison

1. Finding large repeated or deleted blocks
(e.g. CNVSs) as a function of degree of
similarity
1. within reference human genome
2. within human population
3. between related organisms (e.g. mouse)

2. Finding smaller "exon-level" similarities
(e.g. pseudogenes)

e Results of Processing
Raw Expt. Signals

1.

Signal Processing:
removing artifacts,
normalizing, window
averaging

Segmenting signal into
larger "hits" ("Active
Regions" or ARS)

Clustering together active
regions into even larger
features at different length
scales and classifying
them

Building networks and
beyond....
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Segmenting the Raw "Signal”
from Next-generation Sequencing into

Usable Annotation Blocks

- MSB

¢ Mean-shift segmentation approach following grad. of PDF
¢ Equally applied to aCGH and depth of coverage of short reads

 PeakSeq

¢ Scoring chip-seq expt relative to input control

¢ Simulating chip-seq expt anticipates & allows correction for non-

uniformity
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First-Pass Annotation Clustering and
Characterizing Novel Transcribed Regions
and Groups of Binding Sites

» Deserts and Forests of Binding Activity

¢ on ~50kb scale
¢ Biplot gives broad separation of seq. specific and non-specific factors

and associated genomic bins
e Analyzing Promotors
¢ BoCaTFBS: Refining binding site motifs based on the results of chlP-
chip experiments
 DART classification of TARS

¢ 1300 TARs in ~200 novel pilot ENCODE loci
» based on expression and phylogenetic clustering
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Analysis of Duplication in the Genome:
SVs and SDs

» Large-scale analysis of existing CNVs & SDs in
human genome

« SDs assoc. with Alu, pseudogenes and older SDs

« CNVs assoc. other repeats (microsat.) and not as
much with SDs

e Suggestion: Alu burst 40 MYA triggered much NAHR
rearrangement, then dupl. feed on itself in hotspots
but now dying down and NAHR assoc. with other
repeats and CNVs also from NHEJ
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