Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

Mark B Gerstein Yale

Slides at

Lectures.GersteinLab.org

(See Last Slide for References & More Info.)

The problem: Grappling with Function on a Genome Scale?

- 250 of ~530 originally characterized on chr. 22 [Dunham et al. Nature (1999)]
- >25K Proteins in Entire Human Genome (with alt. splicing)

3 - Lectures.GersteinLab.org

(c) '09

Some obvious issues in scaling single molecule definition to a genomic scale

- Fundamental complexities
 - ◊ Often >2 proteins/function
 - ♦ Multi-functionality:2 functions/protein
 - Role Conflation: molecular, cellular, phenotypic

Some obvious issues in scaling single molecule definition to a genomic scale

- Fundamental complexities
 - ◊ Often >2 proteins/function
 - Multi-functionality:2 functions/protein
 - Role Conflation: molecular, cellular, phenotypic
- Fun terms... but do they scale?....
 - ♦ Starry night (P Adler, '94)

Single

Silly or funny names. No relevance to underlying gene function

Multi									
F	Transferred naming system								
	T-relation	kryptonite and superman							
	Naming ceases are shuffled an	Naming ceases to make sense if names are shuffled among genes							
	T-norelation	arleekin valiet tungus ^k							
	Names could b with no loss of	Names could be shuffled among genes with no loss of meaning							
LG	Problematic rela	tionships							
	P-clash	PKD1 and lov-1 ¹							
	Analogous gen names	es with very different							
	P-confusion	MT-1 ^m							
	Many genes wi or many names	th same name, s for one gene							
	P-defunct	BAF45 and BAF47 ⁿ							
	Gene named to shown to be ina	o reflect information later accurate or untrue							
	[Seringha	us et al. GenomeBiology (2008)]							

[Seringhaus et al. GenomeBiology (2008)]

Hierarchies & DAGs of controlled-vocab terms but still have issues...

<u>Towards Developing Standardized</u> <u>Descriptions of Function</u>

- Subjecting each gene to standardized expt. and cataloging effect
 - \Diamond KOs of each gene in a variety of std. conditions => phenotypes
 - \Diamond Std. binding expts for each gene (e.g. prot. chip)
- Function as a vector

nucleic acids small molecules

proteins

	DNA	RNA	ATP	Metal	CoA	NAD	 G protein	CDC28	Calmodulin	
protein 1	1.0	0	0	0	0	0	 0	0	0	
protein 2	0	0.9	0	0	0	0	 0	0	0	
protein 3	1.0	0	1.0	0	0	0	 0	0	0	
protein 4	0	0	0	0	0.8	0	 0	0	1.0	
protein 5	1.0	0	0	0	0	0	 0	0.9	0	
protein 6	0.9	0								
protein 7	0	0.8								

Interaction Vectors [Lan et al, IEEE 90:1848]

Networks (Old & New)

Networks occupy a midway point in terms of level of understanding

1D: Complete Genetic Partslist

~2D: Bio-molecular Network Wiring Diagram 3D: Detailed structural understanding of cellular machinery

Networks as a universal language

<u>Combining networks forms an ideal way</u> of integrating diverse information

Outline: Molecular Networks

- Why Networks?
- Predicting Networks (yeast)
 Propagating known information
- Network Structure: Key Positions (yeast)
 Hubs & Bottlenecks
 Tops of Hierarchy
- Dynamics & Variation of Networks
 - \Diamond Across cellular states $_{(yeast)}$
 - Across environments
 (in prokaryotes)
- Protein Networks & Human Variation

Example: yeast PPI <u>network</u>

Actual size:

- ◊ ~6,000 nodes
 - → Computational cost: ~18M pairs
- $\Diamond\,$ Estimated ~15,000 edges
 - → Sparseness: 0.08% of all pairs (Yu et al., 2008)

Known interactions:

- $\Diamond\,$ Small-scale experiments: accurate but few
 - \rightarrow Overfitting: ~5,000 in BioGRID, involving
 - ~2,300 proteins
- Large-scale experiments: abundant but
 noisy
 - → Noise: false +ve/-ve for yeast two-hybrid data up to
 - 45% and 90% (Huang et al., 2007)

Types of Networks

Predicting Networks

How do we construct large molecular networks? From extrapolating correlations between functional genomics data with fairly small sets of known interactions, making best use of the known training data.

Network prediction: known information

Network prediction: features

• Example 1: gene expression

Gasch et al., 2000

Network prediction: features

• Example 2: sub-cellular localization

Network prediction: data integration

Learning methods

An endless list:

- Docking (e.g. Schoichet and Kuntz 1991)
- Evolutionary (e.g. Ramani and Marcotte, 2003)
- Topological (e.g. Yu et al., 2006)
- Bayesian (e.g. Jansen et al., 2003)
- Kernel methods
 - \Diamond Global modeling:
 - em (Tsuda et al., 2003)
 - kCCA (Yamanishi et al., 2004)
 - kML (Vert and Yamanishi, 2005)
 - Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
 - $\Diamond\,$ Local modeling:
 - Local modeling (Bleakley et al., 2007)

Let's compare in a public challenge! (DREAM: Dialogue for Reverse Engineering Assessment and Methods)

DREAM3: in silico regulatory network reconstruction

Z4 - Lectures.GersteinLab.org₀∞

Our work: efficiently propagating known information

Global vs. local modeling

Global modeling: build one model for the whole network

Example - Pairwise kernel: consider object pairs instead of individual objects

Problem: O(n²) instances, O(n⁴) kernel elements

Global vs. local modeling

Local modeling: build one model for each node

Model for node 3:

Problem: insufficient and unevenly distributed training data (what if node 3 has no known interactions at all?)

Prediction propagation

- Goal: keep the flexibility of local modeling, but tackle the data sparsity problem
- Motivation: some objects have more examples than others
- Our approach:
 - Learn models for objects with more examples first
 - ◊ Propagate the most confident predictions as auxiliary examples of other objects

Prediction accuracy (AUC)

	phy	loc	exp-gasch	exp-spellman	y2h-ito	y2h-uetz	tap-gavin	tap-krogan	int
Mode 1									
direct	58.04	66.55	64.61	57.41	51.52	52.13	59.37	61.62	70.91
kCCA	65.80	63.86	68.98	65.10	50.89	50.48	57.56	51.85	80.98
kML	63.87	68.10	69.67	68.99	52.76	53.85	60.86	57.69	73.47
em	71.22	75.14	67.53	64.96	55.90	53.13	63.74	68.20	81.65
local	71.67	71.41	72.66	70.63	67.27	67.27	64.60	67.48	75.65
local+pp	73.89	75.25	77.43	75.35	71.60	71.51	74.62	71.39	83.63
local+ki	71.68	71.42	75.89	70.96	69.40	69.05	70.53	72.03	81.74
local+pp+ki	72.40	75.19	77.41	73.81	70.44	70.57	73.59	72.64	83.59

Observations:

- Highest accuracy by training set expansion
- Over fitting of local modeling without training set expansion
- Prediction propagation theoretically related to co -training (Blum and Mitchell, 1998)
 - ♦ Semi-supervised (Similarity with PSI-BLAST)

From horizontal to vertical

Protein interaction

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

Domain interaction

Pfam domains: PF00107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

[Yip and Gerstein, in revision]

Residue interaction

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

[Yip and Gerstein, in revision]

Combining the three problems

Empirical results (AUCs)

	Ind. levels	Unidirectional flow			Bidirectional flow				
Level		PD	PR	DR	PD	PR	DR	PDR	
Proteins	71.68				72.23	72.50		72.82	
Domains	53.18	61.51			71.71		68.94	71.20	
Residues	57.36		54.89	53.81		72.26	63.16	77.86	

- Highest accuracy by bidirectional flow
- Additive effect: 2 vs. 3 levels

[Yip and Gerstein, in revision]

Finding Central Points in Networks: Hubs & Bottlenecks

Where are key points networks ? How do we locate them ?

Global topological measures

Indicate the gross topological structure of the network

3

[Barabasi]

Regulatory and metabolic networks are *directed*

Scale-free networks

Power-law distribution

Hubs dictate the structure of the network

[Barabasi]

Hubs tend to be Essential

Integrate gene essentiality data with protein interaction network. Perhaps hubs represent vulnerable points?

[Lauffenburger, Barabasi]

Relationships extends to "Marginal Essentiality"

Marginal essentiality measures relative importance of each gene (e.g. in growth-rate and condition-specific essentiality experiments) and scales continuously with "hubbiness"

Another measure of Centrality: Betweenness centrality

Betweenness of a node is the number of shortest paths of pairs of vertices that run through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness. Sociometry 40: 35–41.

Girvan & Newman (2002) PNAS 99: 7821.

Betweenness centrality -- Bottlenecks

Proteins with high betweenness are defined as *Bottlenecks* (top 20%), in analogy to the traffic system

[Yu et al., PLOS CB (2007)]

Non-hub-bottleneck node

Hub-non-bottleneck node

Non-hub-non-bottleneck node

Bottlenecks are what matters in regulatory networks

Finding Central Points in Networks #2: Tops of the Hierarchy

Where are key points networks ? How do we locate them ?

<u>Determination of "Level"</u> <u>in Regulatory Network Hierarchy with</u> <u>Breadth-first Search</u>

I. Example network with all 4 motifs

III. Finding mid-level nodes (Green)

II. Finding terminal nodes (Red)

<u>Regulatory Networks have similar</u> <u>hierarchical structures</u>

[Yu et al., Proc Natl Acad Sci U S A (2006)]

S. cerevisiae

Example of Path Through Regulatory Network

Yeast Regulatory Hierarchy: the Middle-managers Rule

<u>Characteristics of Regulatory Hierarchy:</u> <u>Middle Managers are Information Flow</u> Bottlenecks

Average betweenness at each level

<u>Characteristics of Regulatory Hierarchy:</u> The Paradox of Influence and Essentiality

[Yu et al., PNAS (2006)]

Network Dynamics #1: Cellular States

How do networks change across different cellular states? How can this be used to assign function to a protein?

Dynamic Yeast TF network

- Analyzed network as a static entity
- But network is *dynamic*
 - Oifferent sections of the network are active under different cellular conditions
- Integrate gene expression data

Gene expression data for five cellular conditions in yeast

[Brown, Botstein, Davis....]

Backtracking to find active sub-network

• Define differentially expressed genes

- Identify TFs that regulate these genes
- Identify further TFs that regulate these TFs Active regulatory sub-network

Network usage under different conditions static

Luscombe et al. Nature 431: 308

Network usage under different conditions cell cycle

Network usage under different conditions sporulation

61 - Lectures.GersteinLab.org₀∞

Network usage under different conditions diauxic shift

Network usage under different conditions **DNA damage**

Network usage under different conditions

stress response

Network usage under different conditions

SANDY: 1. Standard graph-theoretic statistics:

Global topological measures
Local network motifs

2. Newly derived follow-on statistics:

Hub usageInteraction rewiring

3. Statistical validation of results

Network usage under different conditions

SANDY: 1. Standard graph-theoretic statistics: - Global topological measures - Local network motifs

2. Newly derived follow-on statistics: - Hub usage - Interaction rewiring

3. Statistical validation of results

<u>Analysis of</u> <u>condition-</u> <u>specific</u> <u>subnetworks</u> <u>in terms of</u> <u>global</u> <u>topological</u> <u>statistics</u>

Luscombe et al. Nature 431: 308

- Questions:
 - $\Diamond\,$ Do hubs stay the same or do they change over between conditions?
 - $\Diamond\,$ Do different TFs become important?
- Our Expectations
 - \Diamond Literature:
 - Hubs are permanent features of the network regardless of condition
 - ◊ Random networks (sampled from complete regulatory network)
 - Random networks converge on same TFs
 - 76-97% overlap in TFs classified as hubs (*ie* hubs are permanent)

69 - Lectures.GersteinLab.org₀∞

Luscombe et al. Nature 431: 308

transient hubs

• Most are transient hubs

 \Diamond

Some permanent hubs

Oifferent TFs become key regulators in the network

house-keeping functions

 Implications for conditiondependent vulnerability of network

permanent hubs

71 - Lectures.GersteinLab.org (c) '00

Network Dynamics #2: Environments

How do molecular networks change across environments? What pathways are used more ? Used as a biosensor ?

What is metagenomics?

Genomics Approach

Metagenomics Approach

Partially Assemble and Annotate

Global Ocean Survey Statistics (GOS)

6.25 GB of data7.7M Reads1 million CPU hoursto process

Rusch, et al., PLOS Biology 2007

Expressing data as matrices indexed by site, env. var., and pathway usage

[Rusch et. al., (2007) PLOS Biology; Gianoulis et al., PNAS (in press, 2009]

Canonical Correlation Analysis: Simultaneous weighting

Canonical Correlation Analysis: Simultaneous weighting

Environmental-Metabolic Space

The goal of this technique is to interpret cross-variance matrices We do this by defining a change of basis.

Given
$$X = \{x_1, x_2, ..., x_n\}$$
 and $Y = \{y_1, y_2, ..., y_m\}$

$$C = \sum_{X}^{X} \sum_{X,Y} \max_{A,b} Corr(U,V) = \frac{a' \sum_{12} b}{\sqrt{a' \sum_{11} a} \sqrt{b' \sum_{22} b}}$$

DPM: Discriminative Partition Matching

Metabolism

Environment

Cluster (Partition)

Taurine biosynthesis Heme biosynthesis Asparagine degradation Nitrogen fixation Acylglycerol degradation Asparagine biosynthesis Cysteine Metabolism

Test

Functional class	pval
InfoStorage & Processing	.07
Cellular Process	.08
Metabolism	4x10-14

Strength of Pathway co-variation with environment

Environmentally Environmentally invariant variant

<u>Conclusion #1: energy</u> <u>conversion strategy,</u> <u>temp and depth</u>

<u>Conclusion #2: Outer Membrane</u> components vary the environment

Conclusion #3: Covariation of AA biosynthesis and Import

Why is their fluctuation in amino acid metabolism? Is there a feature(s) that underlies those that are environmentally-variant as opposed to those which are not?

Conclusion #4: Cofactor (Metal) Optimization

Biosensors: Beyond Canaries in a Coal Mine

Networks & Variation

Which parts of the network vary most in sequence? Which are under selection, either positive or negative?

METHODOLOGY: MAP SNP AND CNV DATA ONTO ENSEMBL GENES, AND THEN MAP ENSEMBL GENES TO THE KNOWN INTERACTOME

ILLUSTRATIVE

*From Nielsen et al. PLoS Biol. (2005) and Bustamante et al. Nature (2005)

ADAPTIVE EVOLUTION CAN BE SEEN ON TWO DIFFERENT LEVELS

POSITIVE SELECTION LARGELY TAKES PLACE AT THE NETWORK PERIPHERY

Positive selection in the human interactome

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)

CENTRAL PROTEINS ARE LESS LIKELY TO BE UNDER POSITIVE SELECTION

Degree vs. Positive Selection

 Peripheral genes are likely to under positive selection, whereas hubs aren't

Reasoning

Hubs

- This is likely due to the following reasons:
 - Hubs have stronger structural constraints, the network periphery doesn't
 - Most recently evolved functions (e.g. "environmental interaction genes" such as sensory perception genes etc.) would probably lie in the network periphery
- Effect is independent of any bias due to gene expression differences

*With a probability of over 80% to be positively selected as determined by Ka/Ks. Other tests of positive selection (McDonald Kreitmann and LDD) corroborate this result.

Source: Nielsen et al. PLoS Biol. (2005), Bustamante et al. Nature (2005), HPRD, Rual et al. Nature (2005), and Kim et al. PNAS (2007)

CENTRAL NODES ARE LESS LIKELY TO LIE INSIDE OF SDs

*Specifically, a number of the SDs are likely not fixed, but rather common CNVs in the reference genome Source: Database of genetic variation, HPRD, Rual et al. *Nature* (2005), and Kim et al. PNAS (2007)

Why do we observer this? Perhaps central hub proteins are involved in more interactions & have more surface buried.

Another explanation: THE NETWORK PERIPHERY CORRESPONDS TO THE CELLULAR PERIPHERY

Source: Gandhi et al. (Nature Genetics 2006), Kim et al. PNAS (2007)

IS RELAXED CONSTRAINT OR ADAPTIVE EVOLUTION THE REASON FOR THE PREVALENCE OF BOTH SELECTED GENES AND SDs AT THE **NETWORK PERIPHERY?**

ILLUSTRATIVE

C	Relaxed Constraint	Adaptive Evolution
Inter-Species Variation (Fixed differences)	 Increases inter-species variation – more variable loci are under less negative selection 	 Increases inter-species variation – more variable loci are under less negative selection
	 Can be seen in higher Ka/ Ks ratio or SD occurrence 	 Can be seen in higher Ka/ Ks ratio or SD occurrence
Intra-Species Variation (Polymorphisms)	 Increases intra-species variation – for the very same reason 	 Should not have effects on intra-species variation
	 Can be seen in both SNPs or CNVs 	

SOME, BUT NOT ALL OF THE SINGLE-BASEPAIR SELECTION AT THE PERIPHERY IS DUE TO RELAXED CONSTRAINT

*But it's hard to quantify Source: Kim et al. (2007) PNAS

Similar Results for Large-scale Genomic Changes (CNVs and SDs)

Outline: Molecular Networks

- Why Networks?
- Predicting Networks (yeast)
 Propagating known information
- Network Structure: Key Positions (yeast)
 Hubs & Bottlenecks
 Tops of Hierarchy
- Dynamics & Variation of Networks
 - \Diamond Across cellular states $_{(yeast)}$
 - Across environments
 (in prokaryotes)
- Protein Networks & Human Variation

<u>Conclusions on Networks:</u> <u>Predictions</u>

- Predicting Networks
 - Extrapolating from the Training Set
 - ◊ Principled ways of using known information in the fullest possible fashion
 - Prediction Propagation
 - Multi-level learning

<u>Conclusions:</u> Analysis of Network Structure

- Centrality Measures in Protein Network
 - \Diamond Hubs & Bottlenecks
 - Importance of later in regulatory networks
- Regulatory Network Hierarchies
 - Middle managers dominate, sitting at info. flow bottlenecks
 - Paradox of influence and essentiality
 - Output Description of the second structure of the s

<u>Conclusions: Network Dynamics</u> <u>across Cellular States</u>

- Merge expression data with Networks
- Active network markedly different in different conditions
- Identify transient hubs associated with particular conditions
- Use these to annotate genes of unknown function

<u>Conclusions: Networks Dynamics</u> <u>across Environments</u>

- Developed and adapted techniques to connect quantitative features of environment to metabolism.
- Applied to available aquatic datasets, we identified footprints that were predictive of their environment (potentially could be used as biosensor).
- Strong correlation exists between a community's energy conversion strategies and its environmental parameters (e.g. temperature and chlorophyll).
- Suggest that limiting amounts of cofactor can (partially) explain increased import of amino acids in nutrient-limited conditions.

Conclusions: Connecting Networks & Human Variation

- We find ongoing evolution (positive selection) at the network periphery.
 - \Diamond This trend is present on two levels:
 - On a sequence level, it can be seen as positive selection of peripheral nodes
 - On a structural level, it can be seen as the pattern of SDs that display significantly higher allele frequencies in non-central genes
 - 2 possible mechanisms for this : adaptive evolution at cellular periphery & relaxation of structural constraints at the network periphery
 - We show that the latter can only explain part of the increased variability,,,

- an automated web tool

OI (vers. 2 : "TopNet-like Yale Network Analyzer")

Eile Edit View Favorites Iools Help	N	
🔇 Back 🔹 🕥 - 🖹 📓 🏠 🔎 Search 🤺 Favorites 🛷 🍰 🍦	s • 📙 📓	
Address 🕘 http://networks.gersteinlab.org:8080/tyna/index.jsp?networkOrder=id&categoryOrder	-id&view=ADVANCED_VIEW&iistType=owned&iistNetworkType=1&iistNetw 🔽 🂽 Go 🛛 Links 潞 👰 🗸	
tY	NA	
Getting started API WSDL Download tYNA Installation	guide Plugins for Cytoscape Contact Known problems	
You are logged in as kevin. <u>Logout</u>	View: Simple Advanced	
List Owned 💽 Biological 💌 networks with (Attribute name) 💌	= (Attribute value) List	
Workspace manager	Networks in database (<u>upload download</u>)	
Load an existing network 📀	ID Name Creation	
Load 14. Uetz 2000 yeast two 💌	14 Uetz 2000 yeast two hybrid kevin 21-Feb-06 Delete	
Into workspace 0 💌	15 Ito 2001 yeast two hybrid kevin 21-Feb-06 <u>Delete</u>	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE
Categorized by Nil -	16 Ho 2002 pull down kevin 21-Feb-06 Delete	
Inad	17 Gavin 2002 pull down kevin 21-Feb-06 Delete	Default colors:
	19 MIPS veset PPI kevin 21-Feb-06 Delete	Node: blue 💽 Edge: lightgrey 🔽 Text: white 💌
Current working networks in your workspaces:	21 BIND yeast data keyin 21-Feb-06 Delete	Special coloring: V
Workspace D: statFilter(degrees, geq, 1, value, neighbors=false,	22 DIP veast data kevin 21-Feb-06 Delete	Color gradient: Degree of Original network T from green T to red
"Uetz 2000 yeast two hybrid",	23 Kim 2006 structural interaction kevin 21-Feb-06 Delete	
"Ito 2001 yeast two hybrid"))	24 Han 2004 FYI data kevin 21-Feb-06 Delete	Redraw
Workspace 1: (empty)	25 Luscombe 2004 regulatory kevin 21-Feb-06 Delete	
Workspace 2: (empty)		Statistics:
Workspace 3: (empty)	Categories in database (<u>upload download</u>)	Category Node Edge Connected Degrees ? Clustering Coefficients Eccentricities ? Betweenness ?
Multiple potwork applying	ID Name Creator Creation date	Avg. S.D. Min. Max.
multiple-network analysis	· · · · · · · · · · · · · · · · · · ·	Whole 276 187 109 1.30 0.74 1 7 0.04 0.19 0.00 1.00 2.51 1.57 1 9 3.60 20.22 0.00 200.00
é)	🔮 Internet	

Normal website + Downloaded code (JAVA) + Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006); Similar tools include Cytoscape.org, Idekar, Sander et al]

Acknowledgements

Networks.GersteinLab.org

Acknowledgements

Networks.GersteinLab.org

Acknowledgements

Networks.GersteinLab.org

Acknowledgements

Job opportunities currently

Networks.GersteinLab.org

P Bork, J Raes

for postdocs & students

Comparative Metagenomics

Dinsdale et. al., Nature 2008

Trait-based Biogeography

Green et. al., Science 2008

113 - Lectures.GersteinLab.org

<u>Networks</u> <u>help us</u> <u>understand</u> <u>biological</u> <u>processes</u>

[From H Yu]

More Information on this Talk

TITLE: Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

SUBJECT: Networks

DESCRIPTION:

```
Talk at Stanford Research Institute (SRI) 2009.05.21, 15:30-16:30;
[I:SRI] (Full networks talk, I:RECOMB09 with nethierarchy* and more
metagenomics*. Fits with a rush into 60' w. 10' questions. (PPT
works on mac & PC.)
```

(Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each topic abbrev. which is starred is actually a papers "ID" on the site. For instance,

```
the topic pubnet* can be looked up at
http://papers.gersteinlab.org/papers/pubnet )
```

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

<u>PHOTOS & IMAGES</u>. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as **kwpotppt** , that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .