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Networks (Old & New)
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[Seringhaus & Gerstein, Am. Sci. '08]
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Networks occupy a midway point in
terms of level of understanding

1D: Complete ~2D: Bio-molecular 3D and 4D:

Genetic Partslist Network
Wiring Diagram

Detailed structural understanding
of cellular machinery
(e.g. ribosome in different
functional states)
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[Fleischmann et al., Science, 269 :496] [Jeong et al. Nature, 41:411] [Chiu et al. Trends in Cell Biol, 16:144] 1



Combining networks forms an ideal way

of integrating diverse information

Part of the
TCA cycle

——> Metabolic

pathway

............. » Transcriptional

regulatory
network

Physical protein-
protein Interaction ,

Co-expression
Relationship
Genetic interaction

(synthetic lethal)
Signaling pathways



Networks as a universal language

“ Internet
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Using the

position in

networks to

describe

function
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“To the extent that the federal
gwenmnt didn't fully do its
job right, | take responsibility.™
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“The anthem of the self-
loathers. ... You can never
blame victims. You can

never blame the poor. ...
Even those who didn't get
out of New Orleans, it's not

oy, their fault. Even those that
ere 4 could and didn', it's not
& their fault, it's not their
%f% L ult”
Morg

“You cannot read a newspaper
without the gloating and the
happiness with which the
mainstream pross is roporting the
president's approval numbers.”

B8 Marsh The New Yok Times

Finding the
causal regulator
(the "Blame
Game")

[NY Times, 2-Oct-05, 9-Dec-08]

6- Lectures.GersteinLab.org



Outline: Molecular Networks

Why Networks?

Predicting Networks (yeast pos)
() Propagating known information

Central Points in Networks
() Hubs & Bottlenecks

(yeast ppi & reg. net)
<> TOpS of Hierarchies (yeast reg.)

( Identified by score

(human miRNA-targ. net)

Dynamics of Networks

¢ Across environments
(in prokaryote metab. pathways)

7- Lectures.GersteinLab.org s



Different Types of Molecular Networks

ansc“p\ion factors and Sfacy,
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Target genes

Undirected
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Directed

[Toenjes, et al, Mol. BioSyst. (2008);
Jeong et al, Nature (2001); Horak, et al,
Genes & Development, 16:3017-3033;
DeRisi, lyer, and Brown, Science,
278:680-686]
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Example: yeast PPI
network

Actual size:

() ~6,000 nodes
— Computational cost: ~18M pairs
( Estimated ~15,000 edges

—> Sparseness: 0.08% of all pairs (Yu et al., ~ -
2008) e

Known interactions: S

¢ Small-scale experiments: accurate but few
— Qverfitting: ~5,000 in BioGRID, involving
~2,300 proteins

( Large-scale experiments: abundant but
noisy

— Noise: false +ve/-ve for yeast two-hybrid
data up to

45% and 90% (Huang et al., 2007)

-

—{
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Predicting Networks

How do we construct large molecular networks?
From extrapolating correlations between functional genomics data with fairly
small sets of known interactions, making best use of the known training data.

(c) '09
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Training sets

Known interactions

Known non-interactions

Unknown

()09
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Network prediction: features

:< 1 8 \\‘ 2 ;
)
x,=(0.8,2.2,1.5, ...)
)

x;=(43,0.1,75,...) )

sim(X;, X,) = 0.62 3
sim(X;, X3) =-0.58

Similarity scale:

Gasch et al., 2000 1 _

« Example 1: gene expression

x,=(0.2,2.4, 1.5, .

&
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Network prediction: features

« Example 2: sub-cellular localization

sim(x, x,) = 0.81
sim(X,, X;) =0.12
http://www.scq.ubc.ca/wp-content/yeasttwohybridtranscript.gif

Similarity scale:
1

()09
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Data integration & Similarity Matrix

14.



Learning methods

An endless list:

» Docking (e.g. Schoichet and Kuntz 1991)
Evolutionary (e.g. Ramani and Marcotte, 2003)
Topological (e.g. Yu et al., 2006)
Bayesian (e.g. Jansen et al., 2003)
Kernel methods
( Global modeling:
« em (Tsuda et al., 2003)
« kCCA (Yamanishi et al., 2004)
« kML (Vert and Yamanishi, 2005)

» Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
¢ Local modeling:

» Local modeling (Bleakley et al., 2007)

Let’s compare in a public challenge!
(DREAM: Dialogue for Reverse Engineering Assessment and Methods)

15



Our work: efficiently propagating
known information

Training Set eXpanSion Local model 1 | — | Local model 2

« Motivation: lack of training examples
» Expand training sets horizontally

MUI“'Ievel |eal’ning PPI predictions
* Motivation: hierarchical nature of 1

interaction _
« Expand training sets vertically I

RRI predictions

16



Protein interaction

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

17.
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Domain interaction

Pfam domains: PFO0107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

18.

()09



Residue interaction

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

19.
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Combining the three problems

Protein
interactions

Domain
interactions

s Residue
ﬁé interactions

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

———————

—_——— e e ———

i. Independent levels

_

ii. Unidirectional flow

A

—_— e — — —

Y

iii. Bidirectional flow

()09
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Empirical results (AUCs)

Ind. levels Unidirectional flow Bidirectional flow
Level PD PR DR PD PR DR PDR
Proteins 71.68 72.23 72.50 72.82
Domains 53.18 61.51 71.71 68.94 71.20
Residues 57.36 54.89 53.81 72.26 63.16 77.86
A
| ri_l | ’}_II | ’}_II
I I I I I I I I I I | I
] ] I ] ] ]
A\ 4 I \4 1 f 1 f
. Highest accuracy by bidirectional flow
. Additive effect: 2 vs. 3 levels

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

()09
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Finding Central Points in
Networks: Hubs &
Bottlenecks

Where are key points networks ? How do we locate them ?

22 - Lectures.GersteinLab.org ¢



Global topological measures

Indicate the gross topological structure of the network

O
O

\4

Degree (K) Path length (L) Clustering coefficient (C)
5 2 1/6

Interaction and expression networks are undirected

[Barabasi]

23.



Scale-free networks

Power-law distribution

log P()hA "N _‘
Ve 1)(/\)~,\ Y / ’ ‘
] R el
® >€ A
- ALY
loe k 7/
log(Degree) ¢

Hubs dictate the structure of the network

[Barabasi]
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[Yu et al., 2003, TIG]

Hubs tend to be Essential

Integrate gene essentiality data with protein
interaction network. Perhaps hubs represent
vulnerable points?

[Lauffenburger, Barabasi]
25 -

"hubbiness”
Average degree (K)
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[Yu et al., 2003, TIG]

Relationships extends to "Marginal Essentiality”

Marginal essentiality measures relative importance of
each gene (e.g. in growth-rate and condition-specific
essentiality experiments) and scales continuously with g

"hubbiness"

25 -
O -

- 20 4
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N
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Another measure of Centrality:
Betweenness centrality

Betweenness of a node is the number of
shortest paths of pairs of vertices that run
through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness.
Sociometry 40: 35-41.

Girvan & Newman (2002) PNAS 99: 7821.

27 -



Betweenness centrality -- Bottlenecks

Proteins with high betweenness are defined as

Bottlenecks (top 20%), in analogy to the traffic system

4 - 2 = ]
Wt prad s NPt b
AP o i | By
2 oy o . e - |- % |
[ £ ' Y. ' ahid \ =
ok

George Washington
Bridge

28.-
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O
O
O
O

Bottleneck

Hub-bottleneck node

Non-hub-bottleneck node

Hub-non-bottleneck node

Non-hub-non-bottleneck node

Bottlenecks &

Hubs

[Yu et al., PLOS CB (2007)]
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Bottlenecks are what matters in

60%

requlatory networks

90% A

40% A

30% A

20% A

Fraction of essential genes

10% A

0%

P <1020

7]

B Hub-non-bottlenecks
M Bottleneck-non-hubs

Interaction Network

[Yu et al., PLoS Comput Biol (2007)]

v

o 0
P <104

Regulatory Network

()09

30-



Finding Central Points in
Networks #2:
Tops of the Hierarchy

Where are key points networks ? How do we locate them ?

31



Determination of "Level"
in Regulatory Network Hierarchy with
Breadth-first Search

|. Example network with all 4 motifs Il. Finding terminal nodes (Red)

lll. Finding mid-level nodes (Green) IV. Finding top-most nodes (Blue) =

Level 3

Level 2
Level 1

Level 1
[Yu et al., PNAS (2006)]
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imilar

Regulatory Networks have s
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[Yu et al., Proc Natl Acad Sci U S A (2006)]



Yeast Requlatory Hierarchy:
the Middle-managers Rule

—Average # of regulated genes (out-degree)

A. Regulatory hierarchy in S. cerevisiae —=# of TFs at each level

P <0.01

P<6X10*

Level in hierarchy

0 50 100 150 200

34 - Lectures.GersteinLab.org ¢
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Yeast Network Similar in Structure to

Government Hierarchy

with Respect to Middle-managers

B. Governmental hierarchy of a representive city (Macao)

Level in hierarchy

r—Average # of regulated people (out-degree)
-=-# of managers at each level

|

# of people (l.?)



Characteristics of Requlatory Hierarchy:

Middle Managers are Information Flow

Bottlenecks

. Average betweenness at each level

P<10™

60. (9)

P<10™

< ™

Ayouesaly

N

MEELER]

15

10

9¢

Average betweenness (x1000)

[Yu et al., PNAS (2006)]



Characteristics of Requlatory Hierarchy:
The Paradox of Influence and Essentiality

A c.
-10
4 Data unavailable 4 P<10

>

: 5

£ 8

T =

= -

© = i
o 124
-

P<10™" I
0 %0 100 10 200 250 900 S50 0% 5%  10% 5%  20%  25%

# of affected genes in knock-out experiments

Fraction of essential genes in S. cerevisiae
[Yu et al., PNAS (2006)]
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Finding Central Points in Networks #3:
Points of Maximal Regulatory Effect

i

38



* How much does a

regulator influence RE-score: Another way to identify

. 5 -
its targets® "important" network nodes
* For miRNA-target

networks easy to G NENEENENEEEEaENEEEERAEEENESENSLESNERSRESNESSERSRESRERSRRSLERRES

calculate, as Target mRNA 2

all influence is down- 3

regulation gy g

() target prediction via: Z
TargetScan, PITA, §

3

n
One sample =
n

PicTar, miRanda, ...

* Look at down-reg.
genes in a sample
& compare with
targets of a specific |
micro-RNA e H

() more down-reg
genes => stronger
Cheng et al.,

regulatory effect RE score=R -R, Genome Biology, :

Ranking
Expressions

JIOMIBU YNYHW -YNHODIN
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= miR2

-
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> Ranking
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~

3

o

-
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21098 Oy

1

Calculating RE scores of a miRNA in each sample

21008 Oy

ER+ l ER- ___ Sample

Comparing the RE scores between ER+ and ER-
RE-changing miR RE-invariant miR RE-changing miR

(ER->ER+) | (ER-<ER+)

i
1

==

ER+ ER- ER+ ER- ER+ ER-

21028 3y
91098 Iy

Application of
RE-score to
measure
changing
MiRNA effect In

different

conditions
(ER- and ER+ breast
cancer)

Cheng et al., Genome Biology, 2009
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RE-score can be used to
classify cancers

(3) Clustering based on RE
score divides samples into 2
main types of cancer

(4) Clustering better than
based on indiv. gene
expression levels

BER+
ER-

[T

r

s

I

(1) RE-score profile for diff. miRNA in 1 cancer sample.
(2) Tabulate over many different breast cancer samples

Cheng et al., Genome Biology, 2009

hsa-miR-342

o plien s e s e pen
@ 17

()09

sa-miR-193a
sa-miR-145
sa-miR-127
a-miR-122a
sa-miR-588
sa-miR-517a
a-miR-769-5p

41.



Network Dynamics:
Environments

How do molecular networks change across environments?
What pathways are used more ?
Used as a biosensor ?

42



What is metagenomics?

Genomics Approach

Culture Microbes

Extract DNA

— P —

Metagenomics Approach

Collect Sample

Extract DNA

- -

Sequence Assemble and Annotate
ATCGTATA = T
g ' R

- vy ," ‘-Q—
CGCGAAG  —» = .
ACGTCTGA e *:;.T
AGTGCTGCT \  Contig1 t[ )i

\‘\‘-:-—:5"‘{/‘

Sequence Partially Assemble and Annotate
ATCGTGATAGATGATAGTAGA
ATGCTGCATGCATCTAGCACT ~—
ACAGTAGCTAGCTACGTACTA
CAGCTGACTAGCTAGCTAGCT —-
ACGTAGCATGCTAGCTAGCAG —
ACGTACGTAGCTAGCTAGCTAG  ———J»-
ACGTACGTACGTAGCTAGCATC B
AGTCGACTGAGCCAGTGATGAT _—
ACGATGCATGAGCAGATGCTAC
AGATCGTAGCATGCTAGCATGCT ——
ACGTACGTAGCTAGCTAGCTAAG
AGCTAGCATGCTAGTAGCATGAG ~—
ACGATGCTAGCTAGCTAGCTGATA
TCGATCAGCATGCTACGATGCAAG e
ACGATCGATGCTAGCTAGCTAGCAT
AGCTAGCTAGTCAGCTAGCTAGATG

43 - Lectures.GersteinLab.org ¢



Global Ocean Survey Statistics (GO

SCIENCE IN THE
PETABYTEERA

USA

. Canada
Sl 7 Northern Gulf of Maine
8Newport Harbor, RI 6 Bay of Fundy, Nova Scotia (Estuary) o
Sl 5 Bedford Basin, Nova Scotia (Embayment), 2®
10 Cape May, NJ 4 Outside Halifax,Nova Scotia o
11 Del NJ (Estuary) of Maine @11 9
12 Chesapeake Bay, MD (Estua 120 1
13 Off Nags Head, 5C
North America o713 Sargasso Stations,
Bermud
14outhof Charleston, ¢ erme a-01
USA 14 00
15 Off Key West, FL
16 Gulf of Mexi :
it Atlantic
160915 Ocean
1,7 Vucatan ChamRéliMaxico
e18
18 Rosario Bank, Honduras
35 CottaRica
25 Dirty Rock,Cocos Island Panama
30 rnging Reel asiciand®! ) 19MNoitheastofColon
e 36 26 mifrom cogesisiane $20  20Lake Gatun (Freshwater)
314° &£ 21 Gulf of Panama
% 034 o 21
328 25083 22
22 250 mi from Panama City
27'28
ana (hypersaline) 33 X ® 134 mi NE of Galapogos, Ecuador
037 South
Equatorial Pacific TAO, International America

6.25 GB of data
7.7M Reads

1 million CPU hours
to process

Rusch, et al., PLOS Biology 2007
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Pathway Sequences

(Community Function) \

boli
el

Environmental

Features

. B1 3800
Sites

1400

1000

100

400

By |2200
v

Environmental
Metadata Temp NaCl Depth

Sites

15°C} 2721 10m
23°C| 366 S5m

I i

READS ——> PROTEIN FAMILIES —— PATHWAYS

CCGTGAGCACGATGCGC e mmmmmmeae

.Y (e () ]y p—
ATCGTGACGCGATGC---

CCGTGHGCACGHTGCGG(’TGCT{#TGCT ______________
ATC(.:TQACC%CéE%%ATGCT -
GCGATCGATCGATCGTAG e —

TGCTGCTAGCATGC T cmeeeeemee
GCCATCGATCGATCGTAGC -

TCCT GCTAGCATGCT --------

CCGTGAGCACGATGCGC —mmmmnmmnnmen

GTATCGTAGCATGC TT-emeemm e

CCGTGAGCACGATGCGC--wmmrmmnmenm
GCGATCGATCGATCGTAGC--sememeeme

L
- P.=2+1+3 P, =2+4+3
P,=5+2+6 P, =5+7+6

PATHWAYS

P=f +f+f
%=Q+Q+Q

Expressing
data as
matrices
indexed by
site, env. var.,

and pathway
usage

[Rusch et. al., (2007) PLOS Biology;
Gianoulis et al., PNAS (in press, 2009]
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Simple Relationships: Pairwise
Correlations

Environmental

boli
bathways

[ Gianoulis et al., PNAS (in press, 2009) ]

Metadata Te NaCl §Depth
Sites B1 3800 | 140 1000 ' B1 15ecl 272 hiom
gy |2200 [ To0|[ 400 Sites oo [723°Cf 366 5m
\ 4
Environmental Features
Chlorophyll Temp e
— » " .. .
1o % . .
E— 3 ™ g
= e,
o m— 2 e *
P —— 2 ® oo o °
5 q : : g e LIPS
— ° L]
t __: T . =68
— | . . [ ] . . .
h ——— -2 -1 0 1 2
—_— :— Actual Temperature
- 00 W 1
a Cobalamin Biosynthesis
y [ —— ——{Photosystem Il
0. e —
S s === Photosystem |
Carbon Fixation (Dark rx)
= ————— Glutamine Degradation
-1.0 —

()09
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Canonical Correlation Analysis:
Simultaneous weighting

Score # of papers published Undergraduate Graduate School
Performance Index (UPI) | Performance Index (GPI)

[ Gianoulis et al., PNAS (in press, 2009) ] g
T



Canonical Correlation Analysis:

Simultaneous weighting

Undergraduate Graduate School

Score # of papers published Performance Index (UPI) | Performance Index (GPI)
GRE
GRE GPA
L Environmental Metabolic
Features Pathways
Temp  ©fc Photosynthesis  etc
( Chlorophyll Lipid Metabolism
T

[ Gianoulis et al., PNAS (in press, 2009)] -
@
T



Environmental-Metabolic Space

CCA Footprint
Q ; ——
Ew! NaCl A | P3e
ol -
% P1 Depth,
(T:)ar)r( -~ — %g _ [ ﬁ;\ '%
£° ./
-
NaCl Depth S g : P5.
| ' é ; Tempy
Linear combination of *  Linear combination of 59 ssssusiwsedsevinnnnns

lenvironmental| features. |pathways 0 05 00 05 10
Normalized Weights (Dim 1)
The goal of this technique is to interpret cross-variance matrices

We do this by defining a change of basis.
Given X = {xl,xz,....,xn} and Y={y1,,y2,...,ym}

’ b
o 2x  2xy max Corr(U,V)=— T2 ,
B S Sy a,b \/a 211“\/[9 2ab

[ Gianoulis et al., PNAS (in press, 2009) ]
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Strength of Pathway co-variation
with environment

CCA structural correlation

0.3 1

Environmentally Environmentally
invariant variant

&

BRI v

CCA structural correlation

[ Gianoulis et al., PNAS (in press, 2009) ]
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Conclusion #1: energy
conversion strategy,
temp and depth

KEGG Module

[ 2N
*—

ATPase
Photosynthesis Icom plex

¢ a4t ® o a o]
Oxidative . o — ol ole| o | ol o | ®
Phosphorylation [ r 1 | I 1

T4 e o
ATPase

complex

[ Gianoulis et al., PNAS (in press, 2009) ]



Conclusion #2: Outer Membrane
components vary the environment

[ Gianoulis et al., PNAS (in press, 2009) ] ~
To)



Conclusion #3: Covariation of AA
biosynthesis and Import

Why is their fluctuation

in amino acid metabolism?

Is there a feature(s) that

underlies those that are
environmentally-variant

as opposed to those which are not?

I

. Asp-Asn =) .G‘W“"' " Met biosynthesis,

l. | metabolism

Gly ~Glyoxylate el and salvage
Ny ' ‘Putmclhels idine :

1 b|00¥ is
‘Succinate ~Glutamate *
(GABA shunt) \

I =nl

B

[ Gianoulis et al., PNAS (in press, 2009) ] ('R



Biosensors:
Beyond Canaries in a Coal Mine

[ Gianoulis et al., PNAS (in press, 2009)] -

<
10
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Outline: Molecular Networks

Why Networks?

Predicting Networks (yeast pos)
() Propagating known information

Central Points in Networks
() Hubs & Bottlenecks

(yeast ppi & reg. net)
<> TOpS of Hierarchies (yeast reg.)

( Identified by score

(human miRNA-targ. net)

Dynamics of Networks

¢ Across environments
(in prokaryote metab. pathways)

55. Lectures.GersteinLab.org s



Conclusions on Networks:

A

Predictions

() Extrapolating from training sets

¢ Principled ways of using known
information in the fullest possible
fashion

* Prediction Propagation
« Multi-level learning

'y
Ny
\

y -y,
Y T

=

(c)'09
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Conclusions:
Centrality Measures in Protein Networks

 Hubs & Bottlenecks

¢ Importance of later in regulatory
networks

Regulatory Network Hierarchies

¢ Middle managers dominate, sitting at
info. flow bottlenecks

( Paradox of influence and essentiality

() Topmost proteins sit at center of
interaction network

RE-score

() measures degree of (down)
regulation of targets v. non-targets

( Application to miRNA network

¢ Different miRNA RE-scores in cancer
classification

57.



Conclusions: Networks Dynamics

across Environments

fé@ =X -

o8 -
Q

Developed and adapted techniques
(CCA) to connect quantitative features of
environment to metabolism

|dentified footprints predictive of
environment (potentially as a biosensor)

clear relationship exists between a
community’s energy conversion
strategies and its environmental
parameters (e.g. temperature and
chlorophyll)

Suggest that limiting amounts of cofactor
can (partially) explain increased import of
amino acids in nutrient-limited conditions.

58 Lectures.GersteinLab.org (c) 2009



tYNA

(vers. 2:
"TopNet-like
Yale Network Analyzer")

- an automated web tool

/2 tYNA - Control Panel osoft Internet Explorer i 18] x| <
Ble Edt View Favortes Tools Help \ o
3 = T > =
Qe - © - %] 2] ‘h|/)5eerch ¢ Favorites @‘ R @) .
Address [£] lab Order=idacategoryOrder=id DVANCED_VIEWRistTyp: J ] e ‘Lmks ”‘@ = e}
H -3 ted
tYNA =
<>
Getting started AP| WSDL Download tYNA guide Plugins for Cytoscape Contact Known problems
You are logged in as kevin. Logout View: Simple Advanced
List | Owned ~| [ Biological ¥| networks with | (Atribute name) x| = [ (Attribute value) ¥ List >
= =
Workspace manager Networks in database (upload download ) I > <
Load an existing network @ Creation >
1D Mame Creator date <
Load 14. Uetz 2000 yeast two ... ¥ 14 Uetz 2000 yeast two hybrid kevin  21-Feb0B  Delete o
15 Ito 2001 yeast two hybrid kevin  21-Feb-06  Delete
Into workspace 0 ¥ >
16 Ho 2002 pull down kevin  21-Feb-06  Delete
Categorized by Nil > . P
17 Gavin 2002 pull down kevin  21-Feb-06  Delete Display options:
Default col
Load 18 Jansen 2003 PIT keWin 21-Feb0B  Delote it SO0
. Node: [blue ~| Edge: [ ] Text: | =l
. ok ke . ) 19 MIPS yeast PPI kevin  21-Feb-06  Delete Special coloring: @
HTRNE MOriing-neswonks It yOrworkapaces. 21 BIND yeast data kevin  21-Feb-06  Delste € None
k 0 i . geq, 1, value, neighbors=false,
P tersectiont 9 22 DIP yeast data kevin  21-FebDB  Delete & Color gradient: [Degree =] of [Original network =] from [areen = to[red =
"Uetz 2000 yeast two hybrid”, 23 Kim 2006 structural interaction  kevin ~ 21-Feb-08  Delete [e J= =
"o 2001 yeast two hybrid") ! Color class:  Class name: D
24 Han 2004 FY| data kevin  21-Feb-06  Delete Redraw 3
Waorkspace 1 (empty) s
25 Luscombe 2004 regulatory kevin  21-Feb-06  Delete )
Workspace 2: (empty)
Workspace 3: (empty) Clustering Coefficients
database ( upload d ) B Node |Edge g“""ec‘e‘:' Degrees @ ) (7] (2]
ategory Counts |Count omponents
Mulliple-nemnrkanulysis | D Creator Creation date \4 Avg. |S.D. |Min. |Max. |Avg. |S.D. |Min. |Max ‘Avg ‘SD ‘Min ‘Max ‘Avg ‘SD ‘Min Max
& e = ‘n"g“fv':’k ‘ 275‘ 187 ‘ 109 ‘130 ’074’ 1 ‘ 7 ‘0.04 0.19 |0.00 | 1.00 ‘2,51 ‘157‘ 1 ‘ 9 ‘3.50 ‘2022 ‘0.00 200.00
4 Internet

Normal website + Downloaded code (JAVA)
+ Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006);
Similar tools include Cytoscape.org, ldekar, Sander et al]
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More Information on this Talk

SUBJECT: Networks

DESCRIPTION:
Functional Genomics & Systems Biology Workshop, Welcome Trust
workshop, Cambridge, UK; 2009.11.30, 17:20-17:50; [I:WTSYSBIO]
(Medium networks talk, shortened from [I:MBINETS].)

(PPT works on mac & PC and has many photos. Paper references in the talk were mostly from
Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each
topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic pubnet* can be looked up at
http://papers.gersteinlab.org/papers/pubnet )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to
relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see
http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kWpOtppt , that can be easily
queried from flickr, vizz http: //www. flickr.com/photos/mbgmbg/tags/kwpotppt
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