Understanding Protein Function on a Genome-scale through the Analysis of Molecular Networks

Mark B Gerstein Yale

slides at Lectures.GersteinLab.org

(See Last Slide for References & More Info.)

Networks (Old & New)

Same Genes in High-throughput Network

Networks occupy a midway point in terms of level of understanding

1D: Complete Genetic Partslist ~2D: Bio-molecular Network Wiring Diagram

3D and 4D: Detailed structural understanding of cellular machinery (e.g. ribosome in different functional states)

<u>Combining networks forms an ideal way</u> of integrating diverse information

Networks as a universal language

Outline: Molecular Networks

- Why Networks?
- Predicting Networks (yeast ppi)
 Propagating known information
- Central Points in Networks
 - Hubs & Bottlenecks
 (yeast ppi & reg. net)
 - \Diamond Tops of Hierarchies (yeast reg.)
 - \Diamond Identified by score

(human miRNA-targ. net)

- Dynamics of Networks
 - \Diamond Across environments

(in prokaryote metab. pathways)

Different Types of Molecular Networks

Protein-protein Interaction networks

miRNA-target networks

[Toenjes, et al, Mol. BioSyst. (2008); Jeong et al, Nature (2001); Horak, et al, Genes & Development, 16:3017-3033; DeRisi, Iver, and Brown, Science, 278:680-6861

Directed

Undirected

Metabolic pathway networks

Example: yeast PPI network

Actual size:

- $\diamond ~$ ~6,000 nodes
 - → Computational cost: ~18M pairs
- ♦ Estimated ~15,000 edges
 → Sparseness: 0.08% of all pairs (Yu et al., 2008)

Known interactions:

- $\Diamond\,$ Small-scale experiments: accurate but few
 - \rightarrow Overfitting: ~5,000 in BioGRID, involving
 - ~2,300 proteins
- Large-scale experiments: abundant but
 noisy

 \rightarrow Noise: false +ve/-ve for yeast two-hybrid data up to

45% and 90% (Huang et al., 2007)

Predicting Networks

How do we construct large molecular networks? From extrapolating correlations between functional genomics data with fairly small sets of known interactions, making best use of the known training data.

Training sets

4

1

?

?

?

Network prediction: features

• Example 1: gene expression

Gasch et al., 2000

Network prediction: features

• Example 2: sub-cellular localization

Data integration & Similarity Matrix

14 - Lectures.GersteinLab.org 🕬

Learning methods

An endless list:

- Docking (e.g. Schoichet and Kuntz 1991)
- Evolutionary (e.g. Ramani and Marcotte, 2003)
- Topological (e.g. Yu et al., 2006)
- Bayesian (e.g. Jansen et al., 2003)
- Kernel methods
 - \Diamond Global modeling:
 - em (Tsuda et al., 2003)
 - kCCA (Yamanishi et al., 2004)
 - kML (Vert and Yamanishi, 2005)
 - Pairwise kernel (Pkernel) (Ben-Hur and Noble, 2005)
 - \Diamond Local modeling:
 - Local modeling (Bleakley et al., 2007)

Let's compare in a public challenge! (DREAM: Dialogue for Reverse Engineering Assessment and Methods)

Our work: efficiently propagating known information

Training set expansion

- Motivation: lack of training examples
- Expand training sets horizontally

Multi-level learning

- Motivation: hierarchical nature of interaction
- Expand training sets vertically

Local model 1

Local model 2

Protein interaction

Yeast NADP-dependent alcohol dehydrogenase 6 (PDB: 1piw)

Protein-level features for interaction prediction: functional genomic information

Domain interaction

Pfam domains: PF00107 (inner) and PF08240 (outer)

Domain-level features for interaction prediction: evolutionary information

Residue interaction

Interacting residues: 283 (yellow) with 287 (cyan), and 285 (purple) with 285

Residue-level features for interaction prediction: physical-chemical information

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

Combining the three problems

[Yip and Gerstein, BMC Bioinfo. ('09, press)]

Empirical results (AUCs)

	Ind. levels	Unidirectional flow			Bidirectional flow			
Level		PD	PR	DR	PD	PR	DR	PDR
Proteins	71.68				72.23	72.50		72.82
Domains	53.18	61.51			71.71		68.94	71.20
Residues	57.36		54.89	53.81		72.26	63.16	77.86

- Highest accuracy by bidirectional flow
- Additive effect: 2 vs. 3 levels

Finding Central Points in Networks: Hubs & Bottlenecks

Where are key points networks ? How do we locate them ?

Global topological measures

Indicate the gross topological structure of the network

[Barabasi]

Scale-free networks

Power-law distribution

Hubs dictate the structure of the network

[Barabasi]

Hubs tend to be Essential

Integrate gene essentiality data with protein interaction network. Perhaps hubs represent vulnerable points?

[Lauffenburger, Barabasi]

25 - Lectures.GersteinLab.org (a) 98

Relationships extends to "Marginal Essentiality"

Marginal essentiality measures relative importance of each gene (e.g. in growth-rate and condition-specific essentiality experiments) and scales continuously with "hubbiness"

Another measure of Centrality: Betweenness centrality

Betweenness of a node is the number of shortest paths of pairs of vertices that run through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness. Sociometry 40: 35–41.

Girvan & Newman (2002) PNAS 99: 7821.

Betweenness centrality -- Bottlenecks

Proteins with high betweenness are defined as *Bottlenecks* (top 20%), in analogy to the traffic system

Non-hub-bottleneck **node**

Hub-non-bottleneck node

Non-hub-non-bottleneck node

29 - Lectures.GersteinLab.org (a) w

Bottlenecks are what matters in regulatory networks

Finding Central Points in Networks #2: Tops of the Hierarchy

Where are key points networks ? How do we locate them ?

Determination of "Level" in Regulatory Network Hierarchy with Breadth-first Search

I. Example network with all 4 motifs

III. Finding mid-level nodes (Green)

II. Finding terminal nodes (Red)

Regulatory Networks have similar <u>hierarchical structures</u>

E. coli

[Yu et al., Proc Natl Acad Sci U S A (2006)]

S. cerevisiae

Yeast Regulatory Hierarchy: the Middle-managers Rule

Yeast Network Similar in Structure to Government Hierarchy with Respect to Middle-managers

Characteristics of Regulatory Hierarchy: Middle Managers are Information Flow **Bottlenecks**

Average betweenness at each level

5

Average betweenness (x1000)

0

15

10
Characteristics of Regulatory Hierarchy: The Paradox of Influence and Essentiality

[Yu et al., PNAS (2006)]

Finding Central Points in Networks #3: Points of Maximal Regulatory Effect

- How much does a regulator influence its targets?
- For miRNA-target networks easy to calculate, as all influence is downregulation
 - ◊ target prediction via: TargetScan, PITA, PicTar, miRanda, ...
- Look at down-reg. genes in a sample & compare with targets of a specific micro-RNA
 - Ø more down-reg genes => stronger regulatory effect

RE-score: Another way to identify <u>"important" network nodes</u>

Application of RE-score to measure changing miRNA effect in different conditions (ER- and ER+ breast cancer)

Cheng et al., Genome Biology, 2009

Network Dynamics: Environments

How do molecular networks change across environments? What pathways are used more ? Used as a biosensor ?

What is metagenomics?

Genomics Approach

Metagenomics Approach

Partially Assemble and Annotate

43 - Lectures.GersteinLab.org

Global Ocean Survey Statistics (GOS)

6.25 GB of data7.7M Reads1 million CPU hoursto process

Rusch, et al., PLOS Biology 2007

<u>Expressing</u> <u>data as</u> <u>matrices</u> <u>indexed by</u> <u>site, env. var.,</u> <u>and pathway</u> usage

[Rusch et. al., (2007) PLOS Biology; Gianoulis et al., PNAS (in press, 2009]

Canonical Correlation Analysis: Simultaneous weighting

<u>Canonical Correlation Analysis:</u> <u>Simultaneous weighting</u>

Environmental-Metabolic Space

The goal of this technique is to interpret cross-variance matrices We do this by defining a change of basis.

Given
$$X = \{x_1, x_2, ..., x_n\}$$
 and $Y = \{y_1, y_2, ..., y_m\}$

$$C = \sum_{X} \sum_{Y} \sum_{Y,X} \max Corr(U, V) = \frac{a' \sum_{12} b}{\sqrt{a' \sum_{11} a} \sqrt{b' \sum_{22} b}}$$

Strength of Pathway co-variation with environment

Environmentally Environmentally invariant variant

<u>Conclusion #1: energy</u> <u>conversion strategy,</u> <u>temp and depth</u>

<u>Conclusion #2: Outer Membrane</u> components vary the environment

Conclusion #3: Covariation of AA biosynthesis and Import

Why is their fluctuation in amino acid metabolism? Is there a feature(s) that underlies those that are environmentally-variant as opposed to those which are not?

Biosensors: Beyond Canaries in a Coal Mine

Outline: Molecular Networks

- Why Networks?
- Predicting Networks (yeast ppi)
 Propagating known information
- Central Points in Networks
 - Hubs & Bottlenecks
 (yeast ppi & reg. net)
 - \Diamond Tops of Hierarchies (yeast reg.)
 - \Diamond Identified by score

(human miRNA-targ. net)

- Dynamics of Networks
 - \Diamond Across environments

(in prokaryote metab. pathways)

Conclusions on Networks: Predictions

- \Diamond Extrapolating from training sets
- Principled ways of using known information in the fullest possible fashion
 - Prediction Propagation
 - Multi-level learning

Conclusions:

Centrality Measures in Protein Networks

- Hubs & Bottlenecks
 - Importance of later in regulatory networks
- Regulatory Network Hierarchies
 - Middle managers dominate, sitting at info. flow bottlenecks
 - $\Diamond\,$ Paradox of influence and essentiality
 - Output Description of the second s
- RE-score
 - measures degree of (down)
 regulation of targets v. non-targets
 - $\Diamond\,$ Application to miRNA network
 - Oifferent miRNA RE-scores in cancer classification

<u>Conclusions: Networks Dynamics</u> <u>across Environments</u>

- Developed and adapted techniques (CCA) to connect quantitative features of environment to metabolism
- Identified footprints predictive of environment (potentially as a biosensor)
- clear relationship exists between a community's energy conversion strategies and its environmental parameters (e.g. temperature and chlorophyll)
- Suggest that limiting amounts of cofactor can (partially) explain increased import of amino acids in nutrient-limited conditions.

- an automated web tool

<u>OI</u> (vers. 2 : "TopNet-like Yale Network Analyzer")

🖉 tYNA - Control Panel - Microsoft Internet Explorer			TZANK
Elle Edit View Favorites Iools Help			
🔾 Back + 🕥 - 💌 😰 🐔 🔎 Search 🤺 Favorites 🤣 🔗 - چ 🛽	R + 🛄 🛐		TRUNK
	=id8view=ADVANCED_VIEW8&istType=owned&istNetworkType=1&listNetw Go Links Go Links	TIRLOW	(NC6320)
4V		TPALLAN	
ττ	NA		
Getting started API WSDL Download tYNA Installation. You are logged in as kevin. Logout	<u>guide Plugins for Cytoscape Contact Known problems</u> View: Simple Advanced		
List Owned V Biological networks with (Attribute name)			
		THELIOU	
Workspace manager	Networks in database (<u>upload</u> <u>download</u>)		
Load an existing network 😨	Creation		(LAR)
	ID Name Creator date		193.02
Load 14. Uetz 2000 yeast two 💌	14 Uetz 2000 yeast two hybrid kevin 21-Feb-06 <u>Delete</u>		
Into workspace 0 💌	15 Ito 2001 yeast two hybrid kevin 21-Feb-06 <u>Delete</u>	110.00	
Categorized by Nil -	16 Ho 2002 pull down kevin 21-Feb-06 Delete	71	TRATE
	17 Gavin 2002 pull down kevin 21-Feb-06 Delete	Display options: Default colors:	
Load	18 Jansen 2003 PIT kevin 21-Feb-06 Delete	Node: blue 💽 Edge: lightgre	y 🔽 Text: white 💌
Current working networks in your workspaces:	19 MIPS yeast PPI kevin 21-Feb-06 Delete	Special coloring: 📀	
Workspace 0: statFilter(degrees, geq, 1, value, neighbors=false,	21 BIND yeast data kevin 21-Feb-06 <u>Delete</u>	C None	
intersection(22 DIP yeast data kevin 21-Feb-06 <u>Delete</u>	Color gradient: Degree	of Original network 🗴 from green 🗴 to red
"Uetz 2000 yeast two hybrid", "Ito 2001 yeast two hybrid"))	23 Kim 2006 structural interaction kevin 21-Feb-06 Delete	C Color class: Class name: 💌 🔤	hite 🗾
Workspace 1: (empty)	24 Han 2004 FYI data kevin 21-Feb-06 Delete	Redraw	
Workspace 2: (empty)	25 Luscombe 2004 regulatory kevin 21-Feb-06 Delete	itatistics:	
Workspace 3: (empty)		Connected	Degrees O Clustering Coefficients Eccentricities O Betweenness O
	Categories in database (<u>upload download</u>)	Category Counts Count	Degrees V O Eccentricmes V Betweenness V
Multiple-network analysis	ID Name Creator Creation date		Avg. S.D. Min. Max.
		Whole 276 187 109 network 276 187	1.30 0.74 1 7 0.04 0.19 0.00 1.00 2.51 1.57 1 9 3.60 20.22 0.00 200.00

Normal website + Downloaded code (JAVA) + Web service (SOAP) with Cytoscape plugin

[Yu et al., NAR (2004); Yip et al. Bioinfo. (2006); Similar tools include Cytoscape.org, Idekar, Sander et al]

H Yu P Kim K Yip T Gianoulis C Cheng

A Paccanaro P Alves M Seringhaus Y Xia A Sboner P Patel P Bork J Raes M Snyder N Bhardwaj R Alexander L Jensen T Yamada

Acknowledgements

Networks.GersteinLab.org

Job opportunities currently for postdocs & students

More Information on this Talk

SUBJECT: Networks

DESCRIPTION:

Functional Genomics & Systems Biology Workshop, Welcome Trust workshop, Cambridge, UK; 2009.11.30, 17:20-17:50; [I:WTSYSBIO] (Medium networks talk, shortened from [I:MBINETS].)

(PPT works on mac & PC and has many photos. Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily cross-referenced against this website. Each topic abbrev. which is starred is actually a papers "ID" on the site. For instance, the topic **pubnet*** can be looked up at http://papers.gersteinlab.org/papers/pubnet)

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

<u>PHOTOS & IMAGES</u>. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as **kwpotppt** , that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .