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2001: Most of the genome is not coding (only ~1.2% exon).

[IHGSC, Nature 409, 2001]
[Venter et al. Science 29, 2001]
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2007 : Pilot results from ENCODE Consortlum on
decoding what the bases do

[THGSC, Nature 409, 2001]
[ENCODE Consortium, Nature 447, 2007]
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Views on the Function of Junk DNA:
Secret Messages

ial cell, Mycoplasma mycoides JCVI-syn1.0 [Gibson et al., '10]:

b the genome what they called watermarks.... Encoded in the watermarks is a new
code for writing words, sentences and numbers. In addition to the new code there is a web address... and three
quotations: "TO LIVE, TO ERR, TO FALL, TO TRIUMPH, TO RECREATE LIFE OUT OF LIFE." - JAMES JOYCE; ... "

ESsAY

Human DNA, the Ultimate Spot for Secret Messages (Are Some There Now?)

1 in humans, rats.
300 million years

change, and b

“Why they need
aid, noting

g Um0 08 [NY Times, 26-Jun-07]
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s and everything

Nasieut.  [fa bacterium can be encoded Using the same code that computer keyboards use, the
g‘;';‘,.f;;”j_:f;j,ﬂ;‘:ﬁ;f,"‘ljiﬁ;"e* i Japanese group... wrote four copies of Albert Einstein’s famous

_ ‘ formula, E=mc2... into the bacterium’s genome... In so doing they
m et have accomplished at least a part of the dream that Jaron Lanier,
ey a computer scientist and musician, and David Sulzer, a biologist
at Columbia, enunciated in 1999. To create the ultimate time
capsule as part of the millennium festivities at this newspaper,
ovesol they proposed to encode a year’s worth of the New York Times
s | magazine into the junk DNA of a cockroach. “The archival

ist Leslie Orgel, now at the Salk Institute in San

Db e s | cockroach will be a robust repository,” Mr. Lanier wrote, “able to

determine everything
t's ever going to be

The point was not
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If cockroaches can be archives, why not us? The hu-
man genome, for example, cc sts of some 2.9 billion of
those letters — the equiva about 750 megabytes of
data — but only about 3 percent of it goes into c()nf;x»\
iag the 22,000 or 50 genes that make us what we are.

7'7'1" remaining 97 percent, so-called junk DNA D
kooks like gibberish. It’s the dark matter of inner spac Inf \
. 3 1 pace. Inf with DNA broadcast through space by an alie
I::(‘ﬁ: ll{(ncm W:)Ial 1Lis saying to or about us, but within specie FEACCRISLITEOgh Bpane by b S0

a of megal rre %
Imagination o roar,for trademment lese orcr S S O, A o e tht o el survive almost all conceivable scenarios.”
mare. The J:::;m"l'h‘tz;:df,";“: I.lhrl;).md much estrial intelligence, or SETI, should look in- d

King k, 10 pick one obvious exam- y as outward. | le in Ne cientis

Ph,u’ll a " 9 3 5 as outward nan article in New Scientist, - m

¥ amounts to about five megabytes Paul Davies, a cosmologist at Arizona State University, sections of junk DNA seem to be markedly resistant to Starty as ]

LLTTRY

[M Gerstein (*10) Am. Sci.]
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* Pervasive Activity

— Encode pilot

Association with Disease

— Noncoding regions identified correlations
with human diseases (GWAS)

History

— Historical record of genome, molecular
clock

Personal Genomics

— Importance multipled by future need to
interpret millions of personal genomes

References
http://www.nature.com/nature/journal/v461/n7261/full/nature08451.html
http://linkinghub.elsevier.com/retrieve/pii/S0002929707625403
http://www.springerlink.com/content/c3816334655h7844/
http://www.sciencemag.org/cgi/content/abstract/1138341v1
http://www.nature.com/nature/journal/v430/n7000/full/nature02697 .html
http://www.ncbi.nIm.nih.gov/pubmed/7769622?dopt=Citation secrets and facing .
http://www.springerlink.com/content/c8ptualwgby9pxr2/ new questions. [NY Times, 11 -NOV-08]




How might we
annotate a human

text?

Color is
Function

Lines are

Similarity

[B Hayes,
Am. Sci.
(Jul.- Aug.
'06)]
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The Semicolon Wars |

F YOU WANT TO BE a thorough-

aoing weorld traveler, younged to
learn 6,912 ways to say “Where is the |

|toilet, please?” That’s the number of

A Lt Ay o kol et

peoples of planet Earth, according to
Ethnologue.com.

If you want to be the complete poly
glot you also have quite

a challenge ahead of you, learning all

thewaystosay: _ _ _ _ _ _

Iprintf("hello, world\n") ; 1

(This one1s in C.) A catalog maintained
by Bill Kinnersley of the University of
Kansas lists about 2,500
languages. Another survey, compiled
by Diarmuid Piggott, puts the total
even higher, at more than 8,500. And
keep in mind that whereas human lan
guages have had millennia to evolve
and diversify, all the computer languag
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we’ve
been inventing one language a week,
on average, ever since Fortran.

For ethnologists, linguistic diversity
is a cultural resource to be nurtured
and preserved, much like biodiversity.

Brian Hayes

Every|programmer
knows there is one

truelprogramming
language. A new one
every week

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There are|programmers Jof my ac-
quaintance who will dispute that last
statement. I expect to hear from them.
They will argue—zealously, ardently,
vehemently—that we have indeed
found the right programming lan-
guage, and for me to claim otherwise
is willful ignorance. The one true lan-
guage may not yet be perfect, they’ll
concede, but it’s built on a sound foun
dation and solves the main problems,
and now we should all work together
to refine and improve it. The catch, of
course, is that each of these friends will

cide which end of a boiled egg to crack.
This famous tempest in an egg cup was
replayed 250 years later by designers of
computer hardware and communica-
tions protocols. When a block of data is
stored or transmitted, either the least-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if everyone made the same
choice. But that’s not what has hap-
pened, and so quite a lot of hardware
and software is needed just to swap
ends at boundaries between systems.
This modern echo of Swift’s Endian
wars was first pointed out by Danny
Cohen of the University of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace.”
The memo, subsequently published
in Computer, was widely read and ad-

mired; the plea for peace was ignored.
hother fetﬁ:ﬁ)arwfo%ﬂen,-l

I think, but never settled by truce or
treaty—focused on the semicolon. In
Algol and Pascal, program statements
haVe 1o bé separafed by semicolons. ror
example,inx::O,- y:i=x+1l; z:=2 the
semicolons tell the compiler where one
statement ends and the next begins. C

(c)'09



Overview of the Process of Annotation
of non-coding Regions

« Basic Inputs

Doing large-scale similarity comparison,
looking for repeated or deleted regions

2. Functional Genomics.
Determining experimental signals for activity (e.g. transcription)
across each base of genome

Finding repeated or deleted blocks in the genome

1. As a function of similarity (i.e. age, perhaps using explicit models)

2. vs. other organisms, vs. human reference, or within the human population
(synteny, SDs, and CNVs)

3. Big and small blocks
(duplicated regions and retrotransposed repeats)

4. Creation of formal annotations (e.g. genes and pseudogenes)



 Variable Blocks in the Genome (SVs,SDs)

Outline  Calling SVs with various approaches
(MSB, PEMer, ReSeqSim, BreakSeq)

* Analyzing mechanism of formation for
precisely resolved breakpoints & on a
large-scale over the genome

« Pseudogenes
« Pattern-match assignment tools
» Focus on different specific groups —
glycolytic, unitary
« Polymorphic Pseudogenes

* Inter-relating Pseudogenes
with SDs & SVs

(¢)'09
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SV Formation Mechanism

o o NAHR
——mm—=~ (Non-allelic homologous
l recombination)

Flanking repeat
(e.g. Alu, LINE...)

T T T
0 kbp 2 kbp 4 kbp

1

" TEI
. (Transposable
P s> element insertion)

Freed R e
L1, SVA, Alus

SVA (3 kbp)
15 (GTGCCT)" :%?%%EVNTR SIER POLY(A) TSD

Alus (280 bp)

S o NHEJ
B (Non-homologous-
ol® end-joining)
= £<
_‘ ) )
® .v».n.-'-f»é;”'sl No (flanking) repeats.
In some cases <4bp
KR microhomologies
VNTR
(Variable Number Tandem
Repeats)

Number of repeats varies
between different people

Length 40
| |
Eco RI Elco RI
b |
Eco RI EcoRI
l |

Length 70



Genomic Variation

GRESRRt
*[Alu ]—[ Gene

e &

\lu Gene ]—[Alu]—[ Gene

=

Ancestral State

-

The Genome Remodeling Process



Genomic Variation

GRS

= *[Alu]—[ Gene ]

N e $

Non-allelic homologous recombination (NAHR) Ancestral State

[Alu] [ Gene ]—[Alu]—[ Gene ]

The Genome Remodeling Process

Segmental Duplication (SD)

= Gene -~ Dup. Gene —
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Genomic Variation

QRIS

*[Alu]—[ Gene ]

Non-allelic homologous recombination (NAHR) Ancestral State

>

lIuJ Il Gene J—[Alu]—[ Gene ]

The Genome Remodeling Process

Segmental Duplication (SD)

Gene ] Dup. Gene
Syntenic Ortholog
Gene — Dup. Gene
‘ \ / duplicate
Paralog /_\
Gene -~ Dup. Gene -~ Dup. Gene =
L ]
|
family

Gene -~ Dup. agene
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Genomic Variation

GRESA R

*[Alu]—[ Gene ]
-5 &

. Non-allelic homologous recombination (NAHR) Ancestral State

>

lIuJ Il Gene J—[Alu]—[ Gene ]

The Genome Remodeling Process

Segmental Duplication (SD)

Gene ] Dup. Gene
Syntenic Ortholog
Gene — Dup. Gene
‘ \ / duplicate
Paralog /_\
Gene -~ Dup. Gene -~ Dup. Gene =
L ]
|
family

Retro-transpose
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Genomic Variation

GESNE

*[Alu]—[

Gene ]

Me L. Non-allelic homologous recombination (NAHR)

Ancestral State

The Genome Remodeling Process

| Alu | Il Gene J—[Alu]—[ Gene ]
Segmental Duplication (SD)
= Gene ] Dup. Gene
Syntenic Ortholog
SD
- Gene — Dup. Gene =
‘ \ / duplicate
Paralog /_\
= Gene -~ Dup. Gene = Dup. Gene
L ]
\
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.
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Genomic Variation
GRESRR
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lIuJ Il Gene J—[Alu]—[ Gene ]

>

The Genome Remodeling Process

Segmental Duplication (SD)

= Gene -~ Dup. Gene l‘
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Step 0: Generate Reads

- )

Step 1: Call SNPs

using uniquely and correctly mapped reads
Target
' Genome
Step 2: Find SVs
with aberrant paired-end reads, split-reads,
read-depth analysis and CGH array data
- ma -pai”e‘—*e_"d}e\a‘h —p—
split_-re_ad
N
read-de - Mmm- - aw
data . - = E - .
—
—
CGH array
data
Reference
# Genome
De}éiion /’ \
/ Inserjion \- Target
0 s .
Duplicaton . _ - 4 enome

Main Steps in
Genome
Resequencing

[Snyder et al. Genes & Dev. ('10), in press]

Step 3: Assemble New Sequences

with split-, spanning- and misleading-reads
spanning-read

splityread [r— |
sl misleading-read _ e— 8
— (N — L] Target
Genome

Step 4: Phasing

mostly with paired-end reads

-_— — g
! |
! i
’ | ——
_I/ — | EENSG;ired-end readm .
| ! ! ——
LN e — —TT T T e ——
SNP/indel s #
| | Insertion (heterozygous) Inversion| (heterozygous)
Y v v ! A Target 1
TS o Genome ~

Duplication



1. Paired ends  \1ethods to Find SVs

Deletion

Reference —H—
* <
* 4

N o Mapping "““.
<
Genome + R .,
— J— ‘0 0‘
Al L

* <
* *
* *
v e ww  Reference

2. Split read 3. Read depth (or aCGH)

Refe rence # Refe rence #
“ ’0 0’ .0
< * : el &
© * : il <
“ .0 Q’ ’0
: o
Genome + Genome *

° .
Sequenced . paired-ends

Read == Reads —__' —_— _

@ Mapping @ Mapping
Read count
Reference www{mmmmm—- I I

Zero level

4. Local Reassembly

(o)
[Snyder et al. Genes & Dev. ('10), in press] ~



MSB:
Read-Depth
Segmentation

W

(V4!
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v

20 - Lectures.GersteinLab.org ¢ o



LOG RATIO
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Mean-shift-based
(MSB) Segmentation:
no explicit model

For each bin attraction (mean-
shift) vector points in the
direction of bins with most similar
RD signal

No prior assumptions about
number, sizes, haplotype,
frequency and density of CNV
regions

Not Model-based (e.g. like HMM)
with global optimization, distr.
assumption & parms. (e.g. num.
of segments).

Achieves discontinuity-preserving
smoothing

Derived from image-processing
applications

RD signal

A 4

I I I 1
I I Ly, € |
I I =z €
: L P i
€ > » € Tt
I 1 | I
I | | |
13 1 | |
|)>)‘(‘| I I
I I | |
I | | |
— - - - ::
——
et
Bins

[Wang et al. Gen. Res ('09) 19:106]
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Observed depth of coverage

counts as samples from PDF Intuitive Description Of MSB

= Kernel-based approach to
estimate local gradient of PDF

® Region of
Iteratively follow grad to o ® interest

determine local modes
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RD works well on a variety of
sequencing platforms

FEEEF W]

RD by lllumina
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[NA18505]
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Normally mapped

reference genome —T T_
i i
(sample) sequence ——\/——
No SV

End distance < cutoffCi

Insertion
End distance > cutoff Cd

Deletion

PEMer:
Detecting
Structural

Variants
from
Discordant
Paired Ends
in NextGen
Seqg. Data

[Korbel et al.,

Science ('07);

Korbel et al.,
GenomeBiol. ('09)]
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. Marker Marker . "
@ shear into | I circularize
= =)

DNA of sample fragments “fragments of length L \

genome
f//' \
select for marker i cleave randomly
= i /

\ /

Next generation DNA sequencing, followed by PEMer analysis

[1] construct pre-processing [4] outlier-identification l
[2] read-alignment
[3] optimal paired-end placement

[S] outlier-clustering End distance < cutoff Ci

. cutoffs
Cluster 1 K"""‘"“"‘)’ different N C Cy

R 7_'.‘__r cluster sizes \ d
R —A— SN N
r ) 1] ’ ' \ \ 1
= e Py K b Y Hi-
[ S —" .k v = : =l > §4 i
[ S S | |nsert|on %
o End distance > cutoff Cd e i
Cluster 2 [ 4
€ >
R A— R 2 i T
W\ A -®  N— 4 1
H \\ \\ 'l ,, o " e
Deletion \ ‘\ l' ’ H =00
[~ e i median /
Deletion L Paired-end span [bp]

[6] cluster-merging [7] Display/storage of final SV set o

" Breais DB

PEMer:
Detecting
Structural

Variants
from
Discordant
Paired
Ends in
NextGen
Seq. Data

[Korbel et al.,

Science ('07);

Korbel et al.,
GenomeBiol. ('09)]
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@ shear into Marker "™ circularize
DNA of sample fragments fragments of length L
genome
7N
select for marker | . cleave randomly
== H !

Next generation DNA sequencing, followed by PEMer analysis

[1] construct pre-processing
[2] read-alignment
[3] optimal paired-end placement

[4] outlier-identification l

[5] outlier-clustering End distance < cutoffCi

toff:
Cluster 1 M different N _ cutors c
. Cij d

cluster smes\

' e o | " " ‘. "
- 1 . : >
ol S —— Insertion §
| rti . =
reeren End distance > cutoff Cd =
Cluster 2 o
|

[ty \ \ / ? " N
e 1 \ A 4 P o
Deletion \ g ’ / -
. M 4 .
=T, - | median

Deletion L Paired-end span [bp]

[6] cluster-merging [7] Display/storage of final SV set

PEMer:
Detecting
Structural

Variants
from
Discordant
Paired
Ends in
NextGen
Seq. Data

[Korbel et al.,

Science ('07);

Korbel et al.,
GenomeBiol. ('09)]
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Parameterize
Error Models
through
Simulation

Reconstruction

efficiency at
different
coverage

[Korbel et al.,
GenomeBiol.
("09)]

Reconstruction efficiency

Deletion size

Reconstruction efficiency at
5x coverage by 2.5 kb inserts

1000 3
2000 11
3000 49
4000 80
5000 91
6000 92
10000 88
Total 414
False positives 5

100 1§

(6}
o
1

/

Size of deletion [kb]
—_1 -2

— 3 — 4

5 6

10

15 20 25

Effective span-coverage

30-



Local
Reassembly
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Simple Local Assembly:
iterative contig extension

G Iterative contig elongation with the best supported extension  -- @ mostly greedy approach
Current contig(s) Gl
(™
Overlapping ="
reads (== 3]
(]

Current contig(s) GuoEEimmT

Best overlap w/ current contig

’ .
,7 , Most supported extension
Current contig(s) GaEmamm] n - ‘
J
Additional —_——
overlapping _==
reads —
—_—
" Elongate with the best supported extension |
Current contig(s) G Emlmm —
- )
Reads for the e
ble of
assemble of a -
new contig -
Current contig(s) Gl —
e

Output contig(s) GCrutRIEEE i e,

Du et al. (2009), PLoS Comp Biol.

(c)'09
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Optimal integration of sequencing technologies:
Local Reassembly of large novel insertions

Given a fixed budget, what are the sequencing coverage A, B and C that can achieve the maximum
reconstruction rate (on average/worst-case)? Maybe a few long reads can bootstrap reconstruction process.

A

Referencegenome [ ] . - - ——

Elsewhere 1n

Target the genome k e = 'Large novel 1 mSGfthIT ~s_ _ >-| Elsewhere in the genome
genome D ==~ r] S = =< S rl
B
Reads s F— r— (P —— ) ) ss @)
Stmilar-read Split-read Spanning-reads Split-read Misleading-  Same-
(e [I— - a D [ — read read 3
(PSR g — R S—| - [ =] o
g EEEEEEEESEEEEESEEEEEE = - EEEEEEEEESESEEEESEEEEEEEEEEEE RS
I’ e 7 \, : G Long reads: A-x coverage ‘I
I 2 Highly ! I _ !
: - ) represented : : [ Medium reads: B-x coverage :
: — 5 regions 1 : (| Short reads: C-x coverage :
| ! \ |
L @  Mismatches ,' ¥N========================== 4

o™
Du et al. (2009), PLoS Comp Biol, in presstvn)



Optimal integration of sequencing technologies:
Need Efficient Simulation

Different combinations of technologies (i.e. read lenghs) very expensive to actually test.
Also computationally expensive to simulate.

(Each round of whole-genome assembly takes >100 CPU hrs; thus, simulation exploring 1K possibilities takes
100K CPU hr)

C Simplitication of the simulation to the insertion region only

! I< Large novel insertion i

Vi 0 rl S r? >| |

C T e TNy W o
I I
I 1

(¢)'09

L
Du et al. (2009), PLoS Comp Biol, in presstvn)



Optimal integration of sequencing technologies:
Efficient Simulation Toolbox using Mappability Maps

C Simplification of the simulation to the insertion region only

" Large novel insertion i
r? I I< rl S r? >| | J
[ o A R —y—"m . —_—

| |

| 1

D Compute mapability maps to scale to the whole genome

Count of occurrences of &-mers in the whole genome
| ~100,000 X

Genomic p p
_________ & e
. I i I \ posttion
E Simulate the reads v J
—~ ‘ ' Misleading-read
—— — Stmilar-read —_
Additional Readg] ~ 5477 W= @R ——— ST
) - . 8
from elsewhere . o ' —— L With . =
- -l B o r - sequencing
—
( I ) Crror
Reads from - - models
the insertion | (1" G ) ) e B L
L (S R — ] - -
E E : Processed by a simplified :
57! assembler (illustrated in G) :
F Output after applying de novo assembly to reads from E
N P E— -
~ g e To)

Du et al. (2009), PLoS Comp Biol, in presstvn)

Small errors False extension  Gap



Optimal integration of sequencing technologies:
Simulation shows combination vetter than single technology

Mean(recovery rate)

oy}

coverage w/ short (Solexa) reads

A Long reads coverage

1

0.67x

x x x x X x
) ®©  © { ¥ ©

< © o

overage w/ medium (454Treads

Q

-

A _ Short reads coverage -

[ :
|

I Result dependent 3
L Min(recovery ratq) on Specific s
ﬁ \ 96x 1.0 -
@ parameter setting
Medium reads coverage C g 84x o of diﬁerent
2 72x .
Simulation results w/ 8 oox N feqhuelzcmg
shotgun long, medium .. : echnologies
and short read % aox : 04
sequencing on a~10Kb
novel insertion using a =
- 0x 0.0 1
fixed total budget 58%383888%3°§¢ )
coveraae w/ medium (454) reads Du et al. (2009), PLOS Comp Biol, in press )



Split Read
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Split-read Analysis

Breakpoint Breakpoint

Reference

Deletion

Read

Target Genome 3

Breakpoint

Reference

Target Genome

Zhang et al. Submitted More: Breakpoint AssemblyAlt: BreakSeq
38



SV Detection and Genotyping

“BreakSeq” leverages the junction library to detect previously known SVs at nucleotide-level from short-read
sequenced genome, which can hardly be achieved by methods such as split-read

— —1  Map reads = Library of SV
| — ] . . .
R e onto breakpoint junctions
Read or Read . Read
Junctions can be
Alternative put on a chip
Junctions of an
Insertion Alternative
Junction A Junction B Junction of a Junction C
. Y J . Y J Deletion L Y J
60 bp 60 bp 60 bp
Reference Genome Reference Genome

* Read overlaps <10 bp to one side of the breakpoint is discarded and read matches also to the reference genome is classified as non-unique match

[Lam et al., ("10) Nat. Biotech.]



SV Breakpoint Library

Generation of junction sequences

I A SV Deletion (or Insertion) N |

1
Reference genome | Mroame et

Breakpoints

~-

Library of SV
breakpoint junctions

[Lam et al., ("10) Nat. Biotech.]



SVs with sequenced breakpoints

7000 <:: 1KG Project
A >20,000
/

6000 - !

5000 - !

4000 - ,

3000 g

' Published
2000 <: BreakSeq

Library

Number of SVs with sequenced breakpoints

1000

2004 2005 2006 2007 2008 2009 2010

Year

[Lam et al., ("10) Nat. Biotech.]



Validation for Identified SVs

NA18507* Yoruba 105 179
YH* East Asian 81 158
NA12891
[1000 Genomes Project, CEU trio] European 113 219

M1 12 3 4 5 6 7 8 910111213 14 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32M2M133 34 35 36 37 38 39 40 41 M2

[Lam et al., ("10) Nat. Biotech.]

1500bp —
1000bp — ™=

500bp —

100bp =

48 positive outcomes out of 49 PCRs that were scored in NA12891:
98% PCR validation rate (for low and high-support events)
12 amplicons sequenced in NA12891: all breakpoints confirmed




Mechanism Assignment Pipeline




SV Mechanism Classification
{ {

NAHR [ F—

\ )
1

Highly similar with minor offset

f f

I F—

Single RETRO " Repeat Element —

Multiple RETRO —.T— ~—REZ

[Lam et al., ("10) Nat. Biotech.]




SV Mechanism Classification
v

[ 1kb<SV<1Mb ]

yes

Unclassified

Has flanking sequences

yes

Annotate SV and flanking
regions by RepeatMasker

Has extensive
coverage by
VNTR regions

yes

1 no

Extract a window at each breakpoint
and align the two sequences

Wwo sequences
share high similarity;

SV region covered by
a single TE

Potential processed pseudogene
and other ambiguous cases

yes
SV region covered by no .
multiple successive TEs T Has a poly-A tail and TSD
yes ¢ no

Annotated as
fragments from a
single TE

_L’?_,[ MTEI ]

yes

Homologous regions have minor
offsets, correct orientations and

NAHR

span the breakpoints

[Lam et al., ("10) Nat. Biotech.]

)

Other ambiguous

2% \_ VNTR
5%
M MTE
active L1 6%
16% NHR
Putative STEI 45%
Other novel active L1 15%
69% 13% Potential
processed NAHR
28%

pseudogene
O,




SV Ancestral State Analysis

Inferring Insertion according to Inferring Deletion according to
Ancestral State Ancestral State

—.gion in Reference Genc'meinferring Deletion St. -n in Reference Genome inferring Insertion-—

A

1000 bp 1000 bp 1000 bp
SV
Junction A Junction C Junction B Junction Junction A Junction C Junction B
Library

Y

—-nic Primate Region inferring Insertion - .ntenic Primate Regio'-'rnferring Deletion St'—

[Lam et al., ("10) Nat. Biotech.] 46



SV Insertion Traces

Formation
Mechanism Stacked
Histogram

Chromosome
Number

NAHR-based insertions
involve nearby

NHR- and

RT-based insertions are

sequences mostly inter-chromosomal
12
>
2
o 10
A& -l
£ 8
c
2 6
@
[%]
£ 34
>
%)
2
0
10 20 30 40 50 60 70 80 90 2100
Distance to breakpoint (kbp)
B NAHR B NHR m STEI
Chromosomal :
Insertion Trace
Ideogram

[Lam et al., ("10) Nat. Biotech.]



Breakpoint Features Analysis

11.0 , ===+ NAHR flexibllity 2.00
-=== NHR flexibility
SVs vs. Telomeres —— NAHR stabllity
1.98
v 10.9
Distance to telomeres —_ 1.96
3 108 =
- T ! P =20.06 g 1.04 g
1.2e+08 — ' =20-07 Q oy
bosoos | | 2 107 =
. = ' | 2 192 &
- 1 2 I~
8 b z
6.0e+07 — ! 2 106 1.90
. 3 B
D —— ; g
-  — 2 1.88 o
! T ' < 105 0}
0.0e+00{ =— -4 - 4 ’ &
. o
I I 1 I 1.86
NAHR NHR TEI
104
1.84
10.3 1.82
=500 =300 =100 100 300 500

Distance to breakpoint (bp)

[Lam et al., ("10) Nat. Biotech.]



Large-scale Analysis of Repeated
Blocks in the Genome
(SDs & CNVs)

49



080907_SD_CNV_Slides_ MBG_CEGS_PMK

PERFORM LARGE SCALE CORRELATION ANALYSIS TO DETECT REPEAT
SIGNATURES OF SDs AND CNVs

If exact CNV breakpoints are
known, we can calculate the
enrichment of repeat
elements relative to the
genome or relative to the local
environment

Exact match

Local environment

...ATCAAGG

CCGGAA...

@

@

Survey a range of genomic
features

Count the number of
features in each genomic
bin (100kb)

Calculate correlations /
enrichments using robust
stats

Genomic
bin

- N O =

N = O O

o —= O ©o

o N O =

- O O O
o o = ©o
- O = O

Alu

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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OLDER SDs ARE MUCH MORE LIKELY TO BE FORMED BY ALU ELEMENTS

080907_SD_CNV_Slides MBG_CEGS_PMK

0.14

0.14

0.13

Alu association with SDs by age

0.12

0.09

0.08

90-92%

92-94%

94-96%

96-98%

98-99%

>99%

* The co-localization of Alu
elements with SDs is highly
significant.

* Older SDs have a much
higher association with Alus

than younger SDs.

* Hence it is likely, that Alu
elements were more active
in mediating NAHR in the
past (consistent with the Alu
burst)

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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SDs COLOCALIZE WITH EACH OTHER,
PARTICULARY THOSE OF THE SAME AGE

Corollary
p
sSD * SDs can mediate NAHR and lead to the
formation of CNVs
o * CNVs can become fixed and then be SDs
l NAHR
15D+ CNV * We find (not shown) that SD location tends to be
' correlated with other SDs
* Furthermore, SDs co-localize most with SDs of a
l Fixation similar age.
2 SDs
“SD selfpropagation”
\_

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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Alu AFTER THE ALU BURST, THE
NAHR SD IMPORTANCE OF ALU
ELEMENTS FOR GENOME
~ LINE REARRANGEMENT
Microsatellite DECLINED RAPIDLY
NHEJ Subtellom.eres
Fragile sites
CNVs H; h\:;unl% o) SDs " SS'dID - * About 40 million years ago
I - (1] ') - (1] .
- gn sed < g there was a burst in
Fixation Aging (~40Mya) retrotransposon activity
........................................... + The majority ofAl lements
e stem from that time

016t ,

onal vt * This, in turn, led to rapid
2 012} ~sD genome rearrangement via
S oal /N NAHR
go-os’ * The resulting SDs, could
gooe - create more SDs, but with Alu
- 0.04 N activity decaying, their

oozr /S — | creation slowed

Oo - 10 26 o SIO B :10 h ’
Percent divergence

Alu Burst (40 MYA) [Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]



Formal
Annotation based
on Comparative
Genomics:
Pseudogenes

lllustration from Gerstein & Zheng (2006). Sci Am.
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Pseudogenes are among the most
interesting intergenic elements

« Formal Properties of Pseudogenes (WYG)
- Inheritable
- Homologous to a functioning element
- Non-functional®
* No selection pressure so free to accumulate mutations
— Frameshifts & stops
— Small Indels

— Inserted repeats (LINE/Alu)
 What does this mean? no transcription, no translation?...

[Mighell et al. FEBS Letts, 2000] m



Identifiable Features of a Pseudogene
(YRPL21)

Synonymous
Premature stop codon mutation

AA N V R 1 E H I K H S K S|R D S F L| K R YV
RPLZ21 AATGTGCTATTGAGCACAATAAGCACTCTAAGACGCGAGATAGCTTCCTAAACGTGTGA

WRPL21 AATGTG|C/ATATTGAGCACATTAAGCACTCCAAGACGTGAGATAACTCCCTAJAAAAACATGA
AA N V| |H 1 E H I K H S K S R D N F L K s

S

Nonsynonymous
mutation

(¢)'09

Gross deletion

K E N D 0 K K K E A K E K G T w Vv 0 L K R 0 P A P P R E A H F \ R
AGGAAAATGATCAGAAAAAG

AAAGAAGCCAAAGAGAAAGGTACCTGGGTTCAACTAAAGCGCCAGCCTGCTCCACCCAGAGAAGCACA CTTTGTG AGA

'AGGAAAATGATCAGAAAAAG ——————————————— JAAA[-J6CCAAAGAGTTCAACTGAAGTGCCAGCCTGCTCTACCAAGAGAAGTCCAACTTTGTGAGA

K E N D 0 K K K 0 R v 0 L K C 0 P A L P R E V' B v R
Base deletion and Base insertion and
frameshift

frameshift

©
Gerstein & Zheng. Sci Am 295: 48 (2006). 1N



DNA Sequences of Exons +

Full L h P i i
ull Length Protein Queries 50 bp Overhang on Either

(simulate processed Side

Wgenes)

Queries of Exon Peptides
(simulate duplicated
PYgenes)

Pseudo

Mﬂm Pipe

: : : : Structure of Query Genes
dl Clusters by Referring to the g

idates] wi
l Dyn. Prog.

Re-Alignment +

Zheng & Gerstein. GenomeBiology (2006).
Zhang et al. Bioinformatics (2006)
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Flat Files <

» DAS

tables.pseudogene.org <> UCSC

[Lam et al., NAR DB Issue ('09)]

Genome
Browser

E—
Ufam

* 12 eukaryotic species
* Human, mouse, rat, chimp...
* 100,052 pseudogenes

* 64 prokaryotic species
* 6,412 pseudogenes

~23K Iin
recent pipeline run

* 13+ unique human sets



Polymorphic Regulatory

o

Sequence Recognition
Homology Feature

rOSS-
Intra-Genome
Genome )
Homology Homalao Disablement

Regulatory Premature
Element Lost Stop Codon

[Lam et al., NAR DB Issue (in press, '09)]

Pseudo-
PolyA Tail

Proposed

HAVANA

59.

(¢)'09



Overall Flow:
Pipeline Runs, Coherent Sets,
Annotation, Transfer to Sanger

* Overall Approach « Chronology of Sets
1. Overall Pipeline runs at 1. Encode Pilot 1%
Yale and UCSC, yielding 2. Ribosomal Protein
raw pseudogenes pseudogenes
2. Extraction of coherent 3. Glycolytic Pseudogenes

subsets for further
analysis and annotation

3. Passing to Sanger for
detailed manual analysis

4. Unitary pseudogenes
5. Polymophic pseudogenes
« Totals (May '09)

and curation - Automatic pipeline
4. Incorporation into final currently gives ~23K
GENCODE annotation - Manually Annotated ~8K

5. Pipeline modification

60-



Specific Pseudogene Assignments:

Glycolytic Pseudogenes
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Number of
pseudogenes for each

glycolytic enzyme

[Liu et al. BMC Genomics ('09)]

Large numbers of processed
GAPDH pseudogenes in
mammals comprise one of the
biggest families but numbers

Glucose

ATP
ADP i
Glucose 6-phosphate
f GPI Lactate i
LDH Mg
Fructose 6-phosphate NADH
ATP Pyruvate
ADP ATP
Fructose 1,6-bisphosphate ADP
Phosphoenolpyruvate
ENO

Glyceraldehyde- ¢y Dihydroxyacetone

3-phosphate phosphate 2-Phosphoglycerate

not obviously correlated with NAD*
mRNA abundance. 1,3-Bisphospho- 3-Phospho-
glycerate glycerate
Processed/Duplicated NADH ADP  ATP
Human Chimp Mouse Rat Chicken Zebrafish  Pufferfish  Fruitfly Worm
HK 1/0 1/2 0/1 - 0/2 - - - -
GPI - - 1/0 - - - - - -
PFK i i i i i o1 . . .
ALDO 1/1 1/1 11/0 7/0 0/1 - - - - %
T1P1 3/0 2/1 6/1 ¥ - - - - -
| GAPDH ||| 60/2 47/3 28546  329/35 | /1 - - - -
PGK 1/1 1/2 2/0 12/0 - - - - -
PGM 12/0 13/1 9/0 30 - - - - -
ENO 1/0 1/2 12/1 36/3 - - - - -
PK 2/0 3/0 10/3 4/1 - - - - -
LDH 10/2 9/1 2717 254 - - - - - :
Total 97 91 422 463 4 1 0 0 0 %




Number of
pseudogenes for each

glycolytic enzyme

[Liu et al. BMC Genomics ('09)]

Large numbers of processed
GAPDH pseudogenes in
mammals comprise one of the

Glucose
ATP

ADP i
Glucose 6-phosphate
f GPI Lactate i
LDH Mg
Fructose 6-phosphate NADH
ATP Pyruvate
ADP ATP
Fructose 1,6-bisphosphate ADP
Phosphoenolpyruvate
ENO

Glyceraldehyde- 5. Dihydroxyacetone

3-phosphate phosphate 2-Phosphoglycerate

biggest families but numbers
nc?tgobviously correlated with NAD®
mRNA abundance. 1,3-Bisphospho- 3-Phospho-
glycerate glycerate
Processed/Duplicated NADH ADP  ATP
Human Chimp Mouse Rat Chicken Zebrafish  Pufferfish  Fruitfly Worm
HK 1/0 1/2 0/1 - 0/2 - - - -
GPI - - 1/0 - - - - - .
PFK : : : : . V1 : : :
ALDO 1/1 1/1 11/0 710 0/1 - - - - >
3/0 2/1 6/1 ¥ - - - - -

60 Proc/2 Dup 3 285/46  329/35 0/1 - - - -
PGK 1/1 1/2 2/0 12/0 - - - - -
PGM 12/0 13/1 9/0 30 - - - - -
ENO 1/0 1/2 12/1 36/3 - - - - -
PK 2/0 3/0 10/3 4/1 - - - - -
LDH 10/2 O/1 2717 25/4 - - - - - :
Total 97 91 422 463 4 1 0 0 0 8



Distribution of human GAPDH pseudogenes

Large numbers of processed
GAPDH pseudogenes in mammals

comprise one of the biggest
families but numbers not
obviously correlated with mRNA

B abundance.
>
B>
> _
o | 60 Proc/2 Dup
> ]
= N [> [ _ ]
- >
2 . o[ ]
el | P 1M — E
P 10 . 1 111. ) —
= . . ’ =§ —
b = = [>
Ml 1B TH ! 1 ] l = I I\-_ ] .
MU LT e NENERINRARER -
> ] = > HERERE > | ' 1 | o 1 b
of T M : 1141, b : BENRERE b
- ) |>u l\' . l\' - 1 1 i - |> l}
_— - e e ek 7 e e 7 _— _— _— e e e _— e e e - et e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

[Liu et al. BMC Genomics ('09, in press)] g
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Human GAPDH
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\':

2
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&
e
=
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0 50 100 150 200
Millions of Years Old
Mouse GAPDH
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e
=
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0 50 100 150 200

Millions of Years Old

Number of Pseudogenes

120

80 -
60 -
40}

20 -

0
0

A

100 -

Burst of Aproximate
Refrotran- Age of GAPDH
spositional pseudogenes

Aclivity

Rat GAPDH

..............................

.........................

150 200

50
Millions of Years Old

100

Age calculated
based on Kimura-2
parameter model of
nucleotide
substitution

[Liu et al. BMC Genomics ('09)]
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Specific Pseudogene Assignments
Unitary Pseudogenes
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[Zhang et al. GenomeBiology (in press, '10)]

Mouse

Mouse

Unitary pseudogenes

Chimp Human Mouse Chimp Human

Last common ancestor of
v euarchontoglires

Gene duplication | Unitary pseudogene relativity

1 Neofunctionalization
J fime ® ® Functional gene

1{ Nonfunctionalization
J time (0JO) Pseudogene

« Unprocessed
pseudogenes
with no
functional
counterparts in
the same
genome

« Assignment is
"relative”

76 In the human
genome relative
to the mouse

67-



[Zhang et al. ("10) GenomeBiology]

------------------ Tarsier Other
Primates
Dating the pseudogenization events New Worid
-------------- Marmoset | Monkoys
Old World
""""" Rhesus | Monkeys
------- Orangutan
... Gorilla Great Apes
// Chimp
. . Human
ADAMZ26B ART2B CALR4 ABCA17 DESC4 ADAM1B
: AYTL1B CETN4 GUCY2G SIRPB3 ADAM3
: FETA CYCT NRADD THA1 ADAMS5
. PRAME CYP2T4 SEC1 . CTF2
: SLC7A15 GULO SULTID1 ACNATZ ' pOC2G
; TAAR4 NEPN TEX21 ACYL3 | HIST3H2BA
i NR1H5 uox AOXSL1 ' HyaLe
PTPRV PCDHGBS MBL1
: TEX16 TAAR3 - mup
5 TSSK5 TCAM1 | TAS2R134
: TLR12 : TMPRSS8
; TMPRSS11C -
: : TRPC2
i I T i T i
58 429 30.5 18.3 86 6.6 0  Millions of years ago
' (MYA)
HYAL6
i ADAMS5 TMPRSS8
LCA of : :
human and chimp i M‘?“ ?TF? §_MUP
O | | | | | | | Human
~ 6.6 (MvA) 6 5 4 3 2 1 0



11 Polymorphic Pseudogenes

Table 2. Human polymorphic pseudogenes

CDS-disruptive mutation

Gene dbSNP ID ® HapMap SNP ID
Change ' Location *

Nonsense mutation

FBXL21 taT (Y) > taA chr5+:135,300,350 :i;;; 69429 rs17169429 (+27)

FCGR2C Cag (Q) —» Tag chr1+:159,826,011  rs3933769 (-60)  rs3933769 (-60)

GPR33 Cga (R) > Tga chr14-:31,022,505 rs17097921 rs17097921

SEC22B Caa (Q) » Taa chr1+:143,815,304 rs2794062 rs16826061 (+95)

SERPINB11  Gaa (E) —» Taa chr18+:59,530,818  rs4940595 rs4940595

TAAR9 Aaa (K) —» Taa chr6+:132,901,302  rs2842899 rs2842899

Frame-shift mutation
CASP12 ACA

KRTAP7-1 AT
PSAPLA1 VA
TMEM158 VA

TPSB2 AC

chr11-:104,268,39
4-5
chr21-:31123841
chr4-:7,487,457
chr3-:45,242,396

chr16-:1,219,240

rs497116 (-67)

rs35359062
rs58463471
rs11402022

rs2234647

[Zhang et al

. ("10) GenomeBiology]

(c)'09

rs497116 (-67)

rs9982775 (~20)
rs4484302 (+441)
rs33751 (+725)
rs2745145
(-1771)
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Polymorphic pseudogenes (3 with allele frequency data)

CDS-disrupted gene GPR33 SERPINB11 TAAR9
Disruptive mutation * Cga (R) > Tga Gaa (E) > Taa Aaa (K) > Taa
dbSNP ID IS17097921 154940595 rs2842899
Genomic location chri4—:31,022,505  chri8+:59,530,818  chr6+:132,901,302
Disrupted codon position * 140 (332) 89 (388) 61(344)
Reference allele in human T T T
Reference allele in other primates 3 C T T

R —
Alldefequncy Lo ol

Test statistic for HWE in the meta-populations  0.285 (P=0.867)  8.659 (P =o0.013) 0.071 (P = 0.965)

% Mutation -
v Pseudogenization

Mutation - Mutation -
-... Pseudogenization -... Resurrection
« “
Macaque Orangutan Chimp Human Macaque Orangutan Chimp Human Macaque Orangutan Chimp Human

70

3 SNPs not found to be under recent positive selection.... [Zhang et al. ("10) GenomeBiology]



F; hierarchical clustering for rs4940595 in SERPINB11

— Toscans in ltaly (T)

— European in Utah (C)

L Gujarati Indians in US (G)

— African in southwest USA (A)

L Mexican in Los Angeles (M)

— Han Chinese in Beijing (H)

L Japanese in Tokyo (J)

— Maasai Kenyan (K)

1+— Yoruba in Nigeria (Y)

— Luhya Kenyan (L)

L Chinese in Denver, US (D)

= = » « DUt population structure at rs4940595—the difference in the allelic frequencies in different populations—could

be result of different selective regimes that the same allele at rs4940595 is subjected to in different population
subdivisions.
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Integration of Pseudogenes
with Other Features
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Pseudogene families and Segmental
Duplications (SDs)

CNVs are the raw form of
variation producing
duplicated elements

Fixed CNVs/SVs create SDs,
which in turn give rise to
duplicated genes and
(eventually) protein families

Thus, we expect, duplicated
pseudogenes (failed
duplications) to occur in SDs

Duplicated pseudogenes located in SDs

50

40

30

20

10

I ! I
r=0.69

| I | L |

1290000088
esforees pos
0

0

20

40 60 80

Duplicated pseudogenes in pseudogene families

SDs comprise ~5% of the human genome but
contain ~18% genes, 46% duplicated pgenes and

22% processed pgenes

Correlation above consistent with the observation that
SDs contain more pgenes than parent genes

Also, 431 fully rectifiable breakpoints overlapped with 8 pseudogenes

identified by PseudoPipe

[Lam et al., NAR DB Issue ('09)]
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080907_SD_CNV_Slides MBG_CEGS_PMK

Pseudogenes & CNV/SDs (whole genome, not GAPDH)

(
Pseudogene association with SDs by age Duplicated pseudogenes
0.32 associated with SDs,
- 0.28 0.21 particularly older ones
] 0.17
0.11 0.1
90-92%  92-94% 94-96% 96-98% 98-99% >99%
Processed Pseudogenes:
) ] serving as repeats for
Processed pseudogenes at SD junctions mediat%ng NApHR
144
Duplicated Segments
—— 1
40
p<<0.001
No. of Number of
SDs with matching - ——
matching pseudogenes .
pseudogenes expected Matching pseudogenes
at matching at random
junctions
o

[Kim et al. Gen. Res. ('08), arxiv.org/abs/0709.4200v1 ]
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CNVs (gene copy-number variation)

Association of SDs &
CNVs with

pseudogenes

, Genes in CNVs T
CNVs & SDs tend to be enriched GO

in environmental response Environ
genes, matching patterns found S mental
for duplicated pseudogenes AN [ AN\ e Response

reproductive ph

Metabolism

Successfully duplicated genes (SDs spanning entire genes) C ate g o ri e s :

regulation of cellular proce

regulation of physiclogical process _/

J
elopment _|

Genes in SDs

Unsuccessful duplicates (duplicated genes inactivated by disruption of coding sequence)

[Korbel et al., COSB ('08)]
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Summary:

Looking Back Over the Talk

76 - Lectures.GersteinLab.org ¢ o



Overview of the Process of Intergenic
Annotation

« Basic Inputs

1. Doing
looking for repeated or deleted regions

2. Determining experimental signals for activity
(e.g. transcription) across each base of
genome

A. Finding repeated or deleted blocks

1.
2.

As a function of similarity (age)
vs. other organisms or vs. human
reference

Big and small blocks
(duplicated regions and retrotransposed
repeats)

« Results of Processing
Raw Expt. Signals

a.

Signal Processing: removing
artifacts, normalizing, window
averaging

Segmenting signal into larger
"hits"

Clustering together active
regions into even larger

features at different length
scales and classifying them

Integrating Annotations,
Building networks and
beyond....

(¢)'09
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 Variable Blocks in the Genome (SVs,SDs)

Outline  Calling SVs with various approaches
(MSB, PEMer, ReSeqSim, BreakSeq)

* Analyzing mechanism of formation for
precisely resolved breakpoints & on a
large-scale over the genome

« Pseudogenes
« Pattern-match assignment tools
» Focus on different specific groups —
glycolytic, unitary
« Polymorphic Pseudogenes

* Inter-relating Pseudogenes
with SDs & SVs

(¢)'09
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Identifying Structural Variants
in the Human Population

- MSB

- Mean-shift segmentation
approach following grad. of
PDF

- Equally applied to aCGH and
depth of coverage of short
reads

« ReSeqSim
- Efficiently simulating

assembly of a representative
variant

- Shows that best
reconstruction has a
combination of long, med.
and short reads

« PEMer

— Detecting Variants from
discordantly placed paired-
ends

- Simulation to paramaterize
statistical model

* BreakSeq

— Building a breakpoint library

- Running against reads in newly
seq. genome to genotype new
SVs

— Building a pipeline for
characterizing breakpoints
according to SV mechanisms
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Analysis of Duplication in the Genome:
SVs and SDs

« Large-scale analysis of existing CNVs & SDs in
human genome

« SDs assoc. with Alu, pseudogenes and older SDs

 CNVs assoc. other repeats (microsat.) and not as
much with SDs

« Suggestion: Alu burst 40 MYA triggered much NAHR
rearrangement, then dupl. feed on itself in hotspots
but now dying down and NAHR assoc. with other
repeats and CNVs also from NHEJ
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Annotating the Human Genome:
Integrative Annotation of Pseudogenes in
Relation to Conservation, Transcription, and

Duplication
* Pseudogene Assignment « Unitary pseudogenes
Technology — Continuous disablement
( Pipeline + DB - A few polymorphic in human
¢ Ontology population
() Pseudofam analysis of
Pseudogene Families « Association with SDs & SVs
« Annotation of Human Genome - As expected, duplicated
¢ Pipeline draft (20K) + Hybrid pseudogenes associated with
Approach SDs and processed

pseudogenes like Alus are

» Glycolytic pseudogenes
near SD junctions

( Great variation in number, with
GAPDH the largest

() Synteny & dating shows most
GAPDH ones are recent,
resulting from retrotranspositional
bursts
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More Information on this Talk

SUBJECT: GenomeTechAnnote

DESCRIPTION:

6t Intl. Symp. on Bioinformatics Research & Applications (ISBRA), U Conn, Storrs, CT,
2010.05.24, 9:00-10:00; [i01SBRA] (Long GenomeTechAnnote talk, building on [I: IBM] .
Should take 60' with questions.)

MORE DESCRIPTION:

Talk works equally well on mac or PC. Paper references in the talk were mostly from Papers.GersteinLab.org. The above topic list can be easily
cross-referenced against this website. Each topic abbrev. which is starred is actually a papers “ID” on the site. For instance,

the topic can be looked up at

http://papers.gersteinlab.org/papers/ )

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2008. Please read permissions statement at
http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant
papers or link to gersteinlab.org).

(¢)'09

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://
streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz:
http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .
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