

Biological Network Analysis

Mark B Gerstein

Yale

slides at

Lectures.GersteinLab.org

(See Last Slide for References & More Info.)

Networks occupy a midway point in terms of level of understanding

 $\begin{array}{c} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

1D: Complete Genetic Partslist ~2D: Bio-molecular Network Wiring Diagram

3D and 4D: Detailed structural understanding of cellular machinery (e.g. ribosome in different functional states)

Networks as a universal language

<u>Combining networks forms an ideal way</u> of integrating diverse information

- Why Networks?
- Network Comparisons

(reg. net. in many organisms)

- in rel. to social hierarchy
- scaling in rel. to partnerships
- Computer OS Comparisons
- Network Dynamics Across Environments

(prokaryote metab. pathways)

- Metabolic Pathways
- Entry pts. (Mem. Proteins)

Outline: Molecular Networks

Network Comparison #1 Comparing the Yeast Regulatory Network to a Governmental Hierarchy

Determination of "Level" in Regulatory Network Hierarchy with Breadth-first Search

I. Example network with all 4 motifs

III. Finding mid-level nodes (Green)

II. Finding terminal nodes (Red)

Regulatory Networks have similar <u>hierarchical structures</u>

[Yu et al., Proc Natl Acad Sci U S A (2006)]

Yeast Regulatory Hierarchy: the Middle-managers Rule

10 - Lectures.GersteinLab.org

Yeast Network Similar in Structure to Government Hierarchy with Respect to Middle-managers

<u>Characteristics of Regulatory Hierarchy:</u> <u>Middle Managers are Information Flow</u> Bottlenecks

Network Comparison #2 Broadening the comparison to different types of hierarchies & different types of biological networks

Different kinds of Hierarchies

- Well-defined levels and a clear chain of command
- A military hierarchy

- Without well-defined levels & with more coregulatory partnerships
- A club or a scientific collaboration network

Intermediate

- High degree of coregulation and can be organized into hierarchies
- A law firm

	Autocratic	Democratic	Intermediate
Betweenness 🛆	1.03	3.6	3.3
Betweenness (4.1	1.08	3.4
Var. Betw. (triangles)	2.1	0.58	1.74
Var. Betw. (all)	2.9	1.4	1.9
D _{Net-collab}	0	0.91	0.71

[Bhardwaj et al., PNAS (2010), in press]

Higher species are more show more collaborative nodes (more democratic)

[Bhardwaj et al., PNAS (2010), in press]

Collaborative Nature of the Levels

[Bhardwaj et al., PNAS (2010), in press]

Collaboration Between Levels

$$D_{betw-level-collab}^{L,M} = \frac{\sum_{A \in L} \sum_{B \in M} \frac{G_A \cap G_B}{G_A \cup G_B}}{\left|L\right| \bullet \left|M\right|}$$

[Bhardwaj et al., PNAS (2010), in press]

Middle Managers Interact the Most in Efficient Corporate Settings

- Floyd, S. W. et al (1992)
 Middle management involvement in strategy and its association with strategic type Strategic Management Journal 13, 153-167.
- Woodward, J. (1982) Industrial Organization: Theory and Practice (Oxford University Press, Oxford).
- Floyd, S. W. et al (1993)
 Dinosaurs or Dynamos?
 Recognizing Middle
 Management's Strategic Role
 The Academy of Management Executive 8, 47-57.
- Floyd, S. W. et al (1997)
 Middle management's strategic influence and organizational performance

Journal of Management Studies 34, 465-485.

Network Comparison #3: Comparing the structure and evolution of biological regulatory networks and software call graphs

E. Coli Transcriptional regulatory network vs Linux kernel call graph

0	
	XE

		<i>E. coli</i> transcriptional regulatory network	Linux call graph
	Nodes	Genes (TFs & targets)	Functions (subroutines)
Basic properties of	Edges	Transcriptional regulation	Function calls
systems	External constraints	Natural environment	Hardware architecture, customer requirements
	Origin of evolutionary changes	Random mutation & natural selection	Designers' fine tuning

	<i>E. coli</i> transcriptional	Linux call graph
	regulatory network	
Number of nodes	1378	12391
Number of persistent nodes	72* (5%)	5120 (41%)
Number of edges	2967	33553
Number of modules	64	3665
Number of comparative	200 bacterial genomes	24 versions of kernels
references		
Years of evolution	Billions years	20 years

[Yan et al., PNAS (2010), in press]

Comparison: hierarchical organization

% in E. coli % in Linux regulatory call graph network Pyramidal vs Top-heavy master 4.6 29.6 regulator middle 5.1 58.2 manager workhorse 90.2 12.3 10⁰ 10⁰ -----out--deg ---out-deg ←in-deg ↔ in-deg 10 10 Probability Distribution 10⁻² Degree distribution Roles of hubs 10⁻² 10⁻³ 10^{-4} ' 10⁻³⊧ out-degree hubs 10⁻⁵ in-degree hubs e.g. "crp" e.g. "printk" 10 ____ 10^{_6} 10⁴ 10⁰ Degree [Yan et al., PNAS (2010), in press] 10⁰ 10² 10² 10⁴

Comparison: organization of modules

Comparison of persistent components

 Persistent genes (preserve among different genomes) vs persistent functions (preserve among different releases)

specialized proteins are preserved across genomes

- Building of the hierarchy:
 - TRN: Bottom up. Regulatory changes are the main driving forces of evolution
 - ♦ Call graph: top down

Evolutionary rate of persistent functions

Why and so what?

The difference can be explained by the nature of hubs evolution: tinkering vs design Getweenness Centrality Kim et.al. PNAS 2007

- Independent modules:
 - robust
 - costly: the system needs a variety of tools for different tasks
- Overlap modules (reuse):
 - Less robust:
 - Breakdown of a generic component is harmful to the whole system
 - Fragile in the sense any change in a module may require compensating changes in a generic function
 - cost effective: components can be used by need to be fine-tuned

Network Dynamics Across Environments: Metabolic Pathways

How do molecular networks change across environments? What pathways are used more ? Used as a biosensor ?

What is Metagenomics?

Traditional Genomics

Metagenomics

Sorcerer II Global Ocean Survey

Sorcerer II journey August 2003- January 200

Sample approximately every 200 miles

Sorcerer II Global Ocean Survey

Extracting Environmental Data from Other Sources

Sample Depth:	1 meter	
Water Depth:	32 meters	
Chlorophyll:	4.0 ug/kg	
Salinity:	31 psu	
Temperature:	11 C	
Location: 41°5'28'	'N, 71°36'8''W	
		Unites States Unites States Mexico Hondusos Costa Rica e Parama Galapagos Islands 10 sates

Annual Phosphate [umol/I] at the surface

World Ocean Atlas 2005 NOAA/NODC

Nutrient Features Extracted: Phosphate Silicate Nitrate Apparent Oxygen Utilization Dissolved Oxygen 35.5

34.5

33.5

40% of Oceans are Impacted by Humans

* Resolution is 1 km square

* Value of a activity at a particular location is determined by the type of ecosystem present:

Impact = ∑ Features * Ecosystem * impact weight

Anthropogenic Features Extracted:

Ultraviolet radiation

Shipping

Pollution

Climate Change

Ocean Acidification

Expressing data as matrices indexed by site, env. var., and pathway usage

[Rusch et. al., (2007) PLOS Biology; Gianoulis et al., PNAS (in press, 2009]

Canonical Correlation Analysis: Simultaneous weighting

Canonical Correlation Analysis: Simultaneous weighting

CCA: Finding Variables with Large Projections in "Correlation Circle"

The goal of this technique is to interpret cross-variance matrices We do this by defining a change of basis.

Strength of Pathway co-variation with environment

Environmentally Environmentally invariant variant

Gianoulis et al., PNAS 2009

Conclusion #1: energy conversion strategy, temp and depth

Gianoulis et al., PNAS 2009

Conclusion #2: Outer Membrane components vary with the environment

Membrane proteins interact with the environment, transporting available nutrients, sensing environmental signals, and responding to changes

> Gianoulis et al., *PNAS* 2009 Patel et al. *Genome Research* 2010

Network Dynamics Across Environments: Membrane Proteins (Pathway Entry Points)

Membrane Proteins: Sensing and Responding the Environment

- 2.3 million predicted membrane proteins
- 1.2 million unique
- 850,000 mapped to 151 membrane protein COGs

107 variant membrane protein families

44 invariant membrane protein families

20% have NO KNOWN FUNCTION

Patel and Gianoulis et al., (in press) Genome Research

Membrane Proteins co-vary more than Metabolic Pathways

Median absolute structural Correlation Coefficient

Membrane Proteins = 0.3

Patel and Gianoulis et al., (in press) Genome Research

CCA Limitations

Dimension 1

- Four Major Obstacles (1) Strength and directionality of relationships not intuitive
- (2) Relative weights of features are difficult to visualize and compare.
- (3) No real means of quantifying covariation between specific sets of features.
- (4) Difficult to visualize or compare results in more than 2 dimensions.

Protein Families and Environmental Features Network (PEN)

Distance: Dot product between 1st and 2nd Dimension of CCA

Protein Families and Environmental Features Network (PEN)

"Bi-modules": groups of environmental features and membrane proteins families that are associated

UV, dissolved oxygen, apparent oxygen utilization, sample depth, and water depth are not in the network

Bi-module 2: Iron Transporters/Pollution/Shipping

Bi-module 2: Iron Transporters/Pollution/Shipping

Rigwell A. J. (2002) Phil. Trans. R. Soc. Lond.

Bi-module 2: Iron Transporters/Pollution/Shipping

-Negative correlation between COG4558 and COG0609 and dust/pollution values (p-value <0.01)

- Searching the BRENDA database for enzymes using iron as a cofactor reveal that an increase in these two COGs negatively correlated to the amount of enzymes present that required iron.

Biosensors: 4 logs in 4 years Beyond Canaries in a Coal Mine

(Moore's law) 1.5x/yr for electronics vs 10x/yr for DNA Sequencing

\$1000 Human genome ~ \$1 E. coli \$100 Human genome ~\$.10 E. coli

Carr and Church, Nat Biotech 2009

- Why Networks?
- Network Comparisons

(reg. net. in many organisms)

- in rel. to social hierarchy
- scaling in rel. to partnerships
- Computer OS Comparisons
- Network Dynamics Across Environments

(prokaryote metab. pathways)

- Metabolic Pathways
- Entry pts. (Mem. Proteins)

Outline: Molecular Networks

Conclusions: Comparison of Social and Regulatory Hierarchies

- Middle managers dominate, sitting at info. flow bottlenecks
- Democratic v Autocratic
- Collaborative (locally democratic) fraction of networks increases with organism complexity
- Middle managers most collaborative
- Most interaction occur between 2 middle managers (as seen in efficient corporate hierarchies)

		<i>E. coli</i> transcriptional regulatory network	Linux call graph
Hierarchical organization	Structure	Pyramidal	Top-heavy
	Characteristic hubs	Upper-level TFs with high out-degree	Generic workhorse functions with high in-degree
Organization of modules	Downstream modules as labeled by	Master TFs responsible for sensing environmental signals	High-level starting functions which initiate execution for specific tasks
	Node reuse	Low	High
	Overlap between modules	Low	High
Persistent nodes	Characteristics	Specialized (non- generic) workhorses	Generic or reusable functions
	Location in hierarchy	Mostly bottom	Mostly top
	Evolutionary rate	Mostly conservative (e.g. dnaA)	Conservative (e.g. strlen) & adaptive (e.g. mempool_alloc)
Design principles	Building of hierarchy	Bottom up	Top down
	Optimal solution favors	Robustness	Cost-effectiveness (reuse of components)

Conclusions: Network Dynamics Across Environments

- Developed approach to connect quantitative features of environment to usage of pathways & families
 - CCA + PEN
- Applied to available aquatic datasets, identified footprints predictive of environment (potentially useful as biosensor)
- Integration of geospatial data can highlight unexpected trends as anthropogenic factors seem to be reflected in microbial function

- Specific Conclusions
 - Strong correlation exists between a community's energy conversion strategies & env. parameters (e.g. temperature & chlorophyll)
 - Relation between Fe and P transporters & amt. of chemical in environment
 - For Fe illustrates impact of pollution & shipping

N Bhardwaj K-K Yan P Patel T Gianoulis H Yu

A Paccanaro K Yip R Bjornson G Fang Y Xia J Korbel J Raes P Bork D Engelman

M Snyder

Acknowledgements

> Job opportunities currently for postdocs & students

Networks.GersteinLab.org

Default Theme

- Default Outline Level 1
 - Level 2

More Information on this Talk

SUBJECT: Networks

DESCRIPTION:

New York Academy of Sciences, A Look at the Tools and Comparative Approaches of Systems Biology, 2010.06.10, 17:00-17:40; [I:NYSYSBIO] (Medium-length networks talk, derived from [I:BROWNMATH] with metagenomics updated.)

NOTES:

This PPT should work on mac & PC. Paper references in the talk were mostly from Papers.GersteinLab.org.

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2010. Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .